Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.mce.biophys.msu.ru/archive/doc15829/doc.pdf
Äàòà èçìåíåíèÿ: Tue Oct 30 16:27:40 2007
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 20:52:07 2012
Êîäèðîâêà:
bf . , .., . , .., .., .. () bf Q- . bf , , . . - b f, , . . KINETIC MODEL OF CYTOCHROME bf COMPLEX. FITING OF MODEL PARAMETERS TO EXPERIMENTAL DATA OBTAINED ON THYLAKOID SUSPENSION. G.V. Lebedeva, M. Jalal Kamali, O.V. Demin, N.E. Belyaeva, G.Yu.Riznichenko (Moscow) Kinetic model of cytochrome bf complex was developed in assumption of Q-cycle operation. bf complex was considered as a membrane enzyme catalyzing electron transfer from plastoquinol to plastocyanin, coupled with proton translocation from chloroplast
254


.. . -- -10, 2002, .254-255

stroma to thylakoid lumen. The dependence of the electron transfer rates on the value of transmembrane electric potential was taken into account. The model was applied to description of experimental data on registration of flash-induced turnover of cytochromes b and f, plastocyanin and kinetics of proton deposition in thylakoid lumen. Estimation of model parameters was performed. bf , I II ( I II), , () . II I, , ( II ) I.. (H+) , . bf - , .. . [1-4], , , - (FeSR), f, b ­ (bh) (bl), «p» () «n» (), . , . Q-,
255


2. ,

b (bl) [1, 2, 5, 6]. SQ-, , bl bh.[7]. , ( f) [8] , , , bf [1, 2, 9-12], ( ), . bf , , , [1]. bf . bf , , . Q- . - .1. Q- II, ( ). , Q, , QH2, ( 26). «s» , «l» ( 27,
256


.. . -- -10, 2002, .254-257

). «p» bf , FeS, FeS (FeSrQH·) ( 1, 2, 3, 4 FeS b).
c
1

Q

s

·

Qs 8 14
s

28 c2

Ql

Hl

+

5
·

c 19

3

Q

s

·

Q 7 13

s

c

4

FeSr-QH· bl bh 1 c
5

FeSr-QH bl Qs· 2Hs+ 2 Qs bh

FeSr-QH· bl bh 3

FeSr-QH· bl · bh Hl

·
Hl+ (QH2) (QH2)l Qs
· s

·

·
Hl
+

Hl+ (QH2) 27 (QH2)l Qs· FeS bl bh Pc Pc
r

(QH2) FeS bl

l 6

Q s· 26 2Hs+ 4 Qs

+

(QH2) FeS

l 8

10 16 (QH2) Q
s · s

c

20

c

7

FeS bl bh

9 15 Pc
r(QH2)s

c

·
Qs· 2Hs+ Q 11 17
11 s

22

Qs· 2Hs+ Qs

bh 23

·
Pc Pc
r

· bl ·
b
h

ox

ox

24 21

Pc
r

ox

Qs

·

25

Pc Pc
r

r

ox

FeSr bl bh c
9

12 18 (QH2)
s

FeSr bl Qs 2Hs+
·

FeS bl bh c H
l +

FeS

·

bh c10

·
6

· bl ·
Qs· 2Hs+ bh c12

(QH2)

s

Q

l

.1. bf . FeS ­ , bl bh ­ - b; QH2 ­ , Q ­ , Q· ­ , Pcr Pcox ­ . «l» «s» . . (i, i=1,..12) .

b (bl) ( 1 2), (FeSr-QH·) bl , , ( 5 6). bl , , bl ( 7, 13 19) , , .
257


2. ,

( 28, ). b: ( bl bh) 19-21. bh «n», Qs·, ( 7-12). bh, ( 13-18). FeS ­ f ( 22-25). , FeS ­ f, .. ( > 105 -1, 3 [1].) (1-12), (Pcr, Pcox), (QH2)l, (QH2)s, Ql, Qs, Qs·, (Hl+) (Hs+) . i- : dXi/dt = v(.Xi) ­ v. (.Xi) Xi ­ i- , ; v(.Xi) v. (.Xi) ­ , /c. : Keq()=exp(-/(RT/F))Keq, k+()=exp(-/(RT/F))k+, k­()=exp((1-)/(RT/F))k­. ­ , , ­ (), 258


.. . -- -10, 2002, .254-259

; Keq, k+ k­ ­ , = 0. , Q- : bl bh ( 19-21); ( 13-18) ( 1-6). 80% , 20% - , , [13-15] bc1 . c , : (m/F)â(d()/dt)= v(qlumen) ­ v(qstroma), m ­ , F ­ ; v(ql), v(qs) ­ (ql) (qs); ql qs + H . . , bf . , ( [16], [17, 18], bf [19]), . . , , , . , [1], .
259


2. ,

bh, f, Pcox Hl+ 15 ns . .2 - ( ), . bf . : (.. (QH2)l=(QH2)s=3, 6 1 ); bf FeS bh, .. 1, 3, 9 11. ( 1 = 3 = 0.05, 9 = 0.5, 11 =0.4); 90% ­ (Pcox=0.9; Pcr=0.1); l=6, ( ) ­ s= 7. «» . , [1, 2]. f , , [1]. Dbsolve. . 2 - ( ).

260


.. . -- -10, 2002, .254-261
Pc 0,25 0 ,2 0,15 0 ,1 0,05 0 0 0,004 0,008 0,012 , 0,016 0,02 0 0,004 0,008 0,012 , 0,016 0,02

a)

0 ,8 0 ,6 0 ,4 0 ,2

)

f

H+

0 ,3 0 ,2 0 ,1 0 0 0,004 0,008 0,012 , 0,016

)

0 0 0 0 0 0 0 0,02

,7 ,6 ,5 ,4 ,3 ,2 ,1 0

)

0

0,004

0,008 0,012 ,

0,016

.2. , [1]. - ) bh; ) Pcox; ) f. . ) . bf . , ­ .

, , , . , (k1-k4) 200 ­ 400 s-1, [1] ( 200 s-1). (k22-k25): 3500 ­ 4000 s-1 , 2000-4000 s-1 [1]. , bl, [1] 105 s-1, ( 100 ­ 200 s-1). [1, 2, 12] , . ,
261


2. ,

[1, 2, 12] (> 105 s-1) bl bh, . (k19k21): 800-1000 s-1. [1, 2] bh , «n»-: 400 s-1. , - . bl ( 4, 8 12) , bl ( 2, 6 10): k7=k9=k11=103 s-1, k8=k10=k12=102 s-1. , , Q- , , bh . - bf 103-104 s-1. , bf Q-. , .
03-04-49048

. 1. Hope A.B., Huilgol R.R., Panizza M., Thompson M., Matthews D.B. (1992) Biochim. Biophys. Acta. 1100, 15-26 2. Hope A.B.(1993) Biochim. Biophys. Acta. 1143, 1-22 3. Anderson J.M. (1992) Photosynth. Res. 34, 341-357 4. O'Keefe D.P. (1988) Photosynth. Res. 17, 189-216 5. Hauska G., Hurt E., Gabellini N., Lockau W. (1983) Biochim. Biophys. Acta. 726, 97-133 6. Rich P.R. (1985) Photosynth. Res. 6, 335-348
262


.. . -- -10, 2002, .254-263

7. Wikstrom M., Krab K. (1986) J.Bioeng. Biomembr. 18, 181-193 8. Fernandes-Velasko J.G., Jamshidi A., Gong X.-S., Zhou J., Ueng R.Y. (2001) J. Bio. Chem. 276, 30598-30607 9. Mauro S., Lannoye R., Vanderloise R., Vander Donckt E. (1986) Photobiochem. Photobiophys. 11, 83-84 10. Rich P.R., Heathcote P., Moss D.A. (1987) Biochim. Biophys. Acta 892, 138-151 11. Mitchell R., Spillman A., Haehnel W. (1990) Biophys. J., 58, 1011-1024 12. Hope A.B., Liggins J., Matthews D.B. (1989) Aust. J. Plant. Physiol. 16, 353-364 13. .., .., .. (1998) . . 63. . 755. 14. Drachev, L.A., Kaurov, B.S., Mamedov, M.D., Mulkidjanian, A.Y., Semenov, A.Y., Shinkarev, V.P., Skulachev, V.P., and Verkhovsky, M.I. (1989) Biochim. Biophys. Acta. 973, 189-197. 15. Semenov, A.Y. ( 1993) FEBS Lett. 321, 1-5. 16. Joliot P, Joliot A. (1984) Biochim. Biophys. Acta 765, 210-226 17. Moss D.A., Rich P.R. (1987) Biochim. Biophys. Acta 894, 189197 18. Jones R.W., Whitmarsh J. (1988) Biochim. Biophys. Acta 933, 258-268 19. Nitschke W., Hauska G., Rutherford A.W. (1989) Biochim. Bioph. Acta 974, 223-226.

263