Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.naic.edu/~astro/chicago2/talks/Bastian-Solar_Radiophysics_of_the_Future.pdf
Дата изменения: Tue Aug 22 00:38:32 2006
Дата индексирования: Sun Dec 23 00:58:26 2007
Кодировка:

Поисковые слова: prominence
Solar & Heliospheric Radiophysics of the Future
T. S. Bastian NRAO


· Science drivers · Observations & techniques · New instrumentation


Science Issues (~10 yrs)
· Magnetic energy storage and release flares and CMEs · Particle acceleration SEPs · Wave dissipation Corona/Chromosphere/Solar Wind · Space weather prediction


from L. Lanzerotti


Long duration flare observed on west limb by Yohkoh and the Nobeyama radioheliograph on 16 March 1993.

Plasma rad.

Thermal f-f Gyrosynchrotron

Y. Hanaoka

Aschwanden & Benz 1997


Reverse slope type IIIdm radio bursts

Isliker & Benz 1994


17 GHz intensity

17 GHz circ. pol.

34 GHz intensity

Magnetic loop in the solar corona illuminated by gyrosynchrotron emission from nonthermal electrons.

Nobeyama RH


TRACE 195 A: 21 April 2002



Noise storm

Bastian et al. (2001)


LoS
1 2 3 4


1.81 0.54 0.03 -1.07

R

sun

(deg)
234 218.5 219.5 221

ne (cm-3)
2.5 x 10
7

B(G)
1.47 1.03 0.69 0.33



RT

(MHz)
330 265 190 30

1.45 2.05 2.4 2.8

1.35 x 107 6.5 x 10 5 x 105
6

Bastian et al. (2001)


TЖrЖk & Kliem (2005)

Linton & Loncope (2005)



New Observables/Techniques
Time resolved, wide-band, imaging spectroscopy (FASR)
coronal magnetography, magnetic energy release, electron distribution function & evolution, shock & beam tracers

Scintillation tomography (MWA, LWA)
IP Spatial spectrum electron density turbulence, IP macrostructures (CIRs), IP magnetic field constraints (FR)


Lee et al 1998



PatzЖld et al. 1987


Faraday rotation measurements using a radio beacon on Helios

PatzЖld et al. (1987)


Tomographic reconstruction of recurrent structures in the inner heliosphere using observations of interplanetary scintillation (IPS).

Jackson et al. 2001


New Instrumentation
· Frequency Agile Solar Radiotelesope (FASR) · Mileura Widefield Array (MWA) · Long Wavelength Array (LWA) · Solar Imaging Radio Array (SIRA) · Lunar based opportunities?
May 12: NASA RFI - "Developing a Strategy for Future Ecploration of the Moon and Beyond" July 28: ROSES-2006, NASA establishes a new program element in Appendix E.4 entitled "Concept Studies for Lunar Sortie Science Opportunities (LSSO)."


Frequency Agile Solar Radiotelescope

FASR is a solar-dedicated radio telescope designed to perform dynamic broadband imaging spectroscopy. It will do so with time resolution, frequency resolution, and angular resolution commensurate with the physical phenomena of interest.


Frequency range Frequency resolution Time resolution Number antennas

50 MHz - 20 GHz 30 MHz ­ 30 GHz (goal) 1% 100 ms A (2-20 GHz): ~100 B (0.25-3 GHz): ~80 C (50-300 MHz): ~60 A: 2 m B: 6 m C: LPDA or similar Stokes IV(QU) 20/9 arcsec ~4.5 km >0.5 deg

FASR Specifications
(a milli-SKA!)
FASR A: ~3-30 GHz FASR B: ~0.3-3 GHz FASR C: ~30-300 MHz

Size antennas Polarization Angular resolution Footprint Field of View


FASR Key Science
Nature & Evolution of Coronal Magnetic Fields Measurement of coronal magnetic fields Temporal & spatial evolution of fields Role of electric currents in corona Coronal seismology Physics of Flares Magnetic energy release Plasma heating Electron acceleration and transport Origin of SEPs Drivers of Space Weather Birth & acceleration of CMEs Prominence eruptions Origin of SEPs Fast solar wind streams


FASR Science (cont)
The "thermal" solar atmosphere Coronal heating - nanoflares Thermodynamic structure & dynamics Formation & structure of filaments Solar Wind Birth in network Coronal holes Fast/slow wind streams Turbulence and waves Synoptic studies Radiative inputs to upper atmosphere Global magnetic field/dynamo Flare statistics