Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://galspace.spb.ru/indvop.file/46.html
Дата изменения: Unknown Дата индексирования: Sun Apr 10 01:11:36 2016 Кодировка: Windows-1251 Поисковые слова: белый карлик |
Заходите к нам на форум: задавайте вопросы - получайте ответы! |
|
Исследование Солнечной Системы - Астрономия
| |||||
ПЛАНЕТЫ У БЕЛЫХ, КОРИЧНЕВЫХ КАРЛИКОВ И НЕЙТРОННЫХ ЗВЕЗД |
НОВЫЕ ПРЕДСТАВЛЕНИЯ
Но эта история могла быть еще печальнее. В нашей Галактике обнаружено более дюжины белых карликов, вокруг которых обращаются астероиды, кометы и, возможно, даже планеты - целое кладбище миров. Пока звезды были еще живы, они ежедневно восходили на небе каждой планеты, согревали ее почву и вызывали ветерок. Живые организмы могли впитывать их лучи. Но когда звезды умирают, они испаряют или проглатывают и сжигают свои внутренние планеты, оставляя только тела на далекой холодной периферии системы. Со временем карлики теряют и эти выжившие объекты. Распад подобных систем демонстрирует нам жестокую картину будущего нашей Солнечной системы, когда через 5 млрд лет наше Солнце умрет.
Астрономы всегда полагали, что не только вокруг Солнца, но и вокруг других звезд могут обращаться планеты. Они ожидали найти системы, подобные нашей Солнечной, где в центре находится звезда, похожая на Солнце. Но сейчас, открыв за 15 лет множество планетных систем, мы видим, что внесолнечные системы могут сильно отличаться от нашей. Первой была система 51 Пегаса, состоящая из звезды, похожей на Солнце, и планеты более массивной, чем Юпитер, обращающейся вокруг звезды на расстоянии меньшем, чем Меркурий удален от Солнца. С повышением чувствительности приборов были открыты еще более странные объекты. Похожая на Солнце звезда HD 40307 имеет три планеты с массами от четырех до десяти масс Земли, орбиты которых меньше половины орбиты Меркурия. Солнцеподобная звезда 55 Рака А имеет не менее пяти планет с массами от 10 до 1000 земных масс. Размеры их орбит - от одной десятой орбиты Меркурия до размера орбиты Юпитера. Такое не смогли придумать даже фантасты.
Системы с белыми карликами доказывают, что вовсе не обязательно, чтобы звезда была похожа на Солнце. Планеты и астероиды могут обращаться вокруг объектов, которые по размеру не больше самих планет. Разнообразие подобных систем не меньше, чем у обычных звезд. Астрономы не ожидали такой распространенности планетных систем, их устойчивости и универсальности процессов их формирования. Так что Солнечная система вовсе не типичная планетная система и прибежище жизни. ФЕНИКС, ВОССТАВШИЙ ИЗ ПЕПЛА
Сегодня порой забывают, что первые планеты вне Солнечной системы были открыты у звезды, совершенно не похожей на Солнце. Этот объект - нейтронная звезда PSR 1257+12 - удивляет даже больше, чем белый карлик. Ее масса больше чем у Солнца, а размер - как у скромного астероида, около 20 км. Этот монстр родился при взрыве сверхновой звезды в 20 раз массивнее Солнца: и взрыв был гораздо мощнее, чем агония солнцеподобных звезд. Трудно представить, как при этом смогли выжить планеты. Более того, взорвавшаяся звезда могла иметь радиус более 1 а.е. (астрономическая единица - расстояние от Земли до Солнца). А это больше размера орбит планет, которые мы видим сегодня. Оба факта указывают, что планеты родились из пепла взрыва.
Несмотря на то что обычно сверхновые выбрасывают свой газ в межзвездное пространство, небольшая часть вещества за счет притяжения падает обратно и образует диск вокруг остатка звезды. В таких дисках и рождаются планеты. Астрономы считают, что Солнечная система обрела свою форму, когда аморфное межзвездное облако из газа и пыли сжалось под собственным весом. Сохранение углового момента не позволило некоторому количеству вещества упасть на новорожденное Солнце, а сформировало из него диск, внутри которого газ и пыль сгустились в планеты. Подобное могло произойти и в диске, возникшем после взрыва сверхновой. Астрономы открыли планетную систему вокруг объекта PSR 1257+12, обнаружив периодические сбои в моментах прихода его радиоимпульсов. Эти сбои возникают из-за того, что обращающиеся вокруг звезды планеты притягивают звезду и периодически ее сдвигают, изменяя расстояние, которое проходят импульсы. Несмотря на интенсивные исследования сигналов от других звезд, больше не найдено ни одной похожей системы. Другой пульсар, PSR В1620-26, имеет по крайней мере одну планету, но она обращается так далеко от него, что, по мнению астрономов, не могла образоваться в диске из вещества сверхновой, а была захвачена у другой звезды. В 2006 г. космический телескоп "Спитцер" (NASA) обнаружил инфракрасное излучение от нейтронной звезды 4U 0142+61. Оно может возникнуть в магнитосфере звезды или в околозвездном диске. Сама звезда родилась во время вспышки сверхновой примерно 100 тыс. лет тому назад, и обычно требуется примерно миллион лет для формирования планет. Поэтому, если инфракрасное излучение говорит о наличии диска, то эта система со временем может стать такой же, как PSR 1257+12. Многие белые карлики также имеют диски, но несколько иного типа: они скорее указывают на наличие обращающихся тел, а не на возможность их формирования. Как и в случае 4U 0142+61, основным их признаком служит неожиданное инфракрасное излучение. Первые данные были получены в 1987 г. наземным инфракрасным телескопом на вершине Мауна-Кеа (Гавайи). В спектре белого карлика G 29-38 был обнаружен избыток инфракрасного излучения, соответствующий спектру тела с температурой 1200 К. что гораздо меньше температуры поверхности звезды в 12 тыс. К.
Вначале астрономы подумали, что рядом с этим белым карликом обращается вторая, более холодная звезда: но в 1990 г. обнаружили, что инфракрасное излучение меняется в унисон c собственным блеском звезды. Это свидетельствует о том, что инфракрасный избыток возникает при переизлучении звездного света. Скорее всего, его источником служит околозвездный диск, нагреваемый звездой. У этой звезды есть еще одна особенность. Ее внешний слой содержит тяжелые элементы, такие как кальций и железо, что довольно странно, поскольку гравитационное поле у поверхности белого карлика такое сильное, что эти элементы должны были утонуть. В 2003 г. Майкл Юра предложил простое объяснение как инфракрасного избытка, так и наличия тяжелых элементов: рядом с белым карликом недавно разрушился астероид, захваченный его мощным гравитационным полем. Каскад столкновений превратил обломки астероида в орбитальный пылевой диск, который стягивается к звезде. АСТЕРОИДЫ НА ДЕСЕРТ
Данную идею подтвердили дальнейшие наблюдения. Астрономы использовали наземные телескопы и космический телескоп 'Спитцер'. Было выявлено 15 белых карликов с похожим инфракрасным избытком и аномалией химического состава. Для G 29-38 и семи других звезд 'Спитцер' пошел дальше и зарегистрировал инфракрасное излучение в диске силикатных частиц, которые похожи на межпланетные пылинки Солнечной системы и заметно отличаются от частиц межзвездной пыли. Более того, внешние слои этих звезд содержат тяжелые элементы в совершенно уникальной пропорции: там сравнительно мало углерода и натрия, характерных для летучих веществ, но много кремния, железа и магния, обычно содержащихся в твердых веществах. Такой химический состав характерен для астероидов и твердых планет Солнечной системы. Все это свидетельствует в пользу предположения, что диск состоит из обломков астероидов.
Диски вокруг белых карликов гораздо меньше протопланетных дисков вокруг новорожденых солнцеподобных звезд. Судя по их инфракрасному излучению, они простираются всего на 0.01 а.е. и по массе не превосходят астероида диаметром 30 км, что подтверждает предположение об их происхождении из такого объекта. Они не могут быть местом формирования новых планет, а скорее показывают, что некоторое количество планетного вещества осталось после гибели звезды. Согласно расчетам, астероиды и планеты земного типа могут избежать разрушения, если они движутся по орбите радиусом более 1 а.е. Когда Солнце умрет, Марс уцелеет, а вот судьба Земли пока под вопросом. Чтобы выяснить, может ли сохраниться часть планетной системы. 'Спитцер' два года назад наблюдал белый карлик WD 2226-210. Он так молод, что внешние слои исходной звезды солнечного типа еще видны вокруг него как туманность 'Улитка', одна из самых известных планетарных туманностей. Следовательно, WD 2226-210 служит недостающим звеном между звездами солнечного типа и старыми белыми карликами, такими как G 29-38. Вокруг WD 2226-210 имеется пылевой диск радиусом 100 а.е.. что сравнимо с размером Солнечной системы. Диски других белых карликов не простираются так далеко. На таком расстоянии гравитация карлика не может разрушать астероиды. Так что этот диск должен состоять из пыли, образовавшейся при столкновениях комет и астероидов. Похожие обломочные диски есть вокруг Солнца и подобных ему звезд.
Данное открытие подтверждает: когда солнцеподобная звезда умирает, далекие астероиды и кометы могут уцелеть. А если могут сохраниться астероиды и кометы, то гораздо более прочные планеты - тем более. По мере остывания WD 2226-210 будет все слабее освещать пыль, и далекий пояс из астероидов и комет станет невидимым. Но иногда объекты из этого пояса могут подлетать близко к белому карлику и разрушаться. КОРИЧНЕВЫЕ КАРЛИКИ
Третий тип отличных от Солнца звезд, которые могут иметь планеты, - это коричневые карлики, которые совсем не похожи на белые, несмотря на схожесть их названий. Коричневые карлики - это не трупы звезд, а карликовые звезды. Они формируются точно так же, как обычные, но их рост останавливается при массе менее 8% массы Солнца - минимальная величина, необходимая, чтобы ядро звезды стало достаточно горячим и плотным для поддержания ядерных реакций. Самое большое, на что они способны, это слабое инфракрасное излучение за счет тепла, накопленного при формировании объекта (и. возможно, короткого раннего периода ядерных реакций). За последние 15 лет обнаружены сотни коричневых карликов, причем самые легкие из них лишь чуть массивнее гигантских планет.
Астрономы выяснили, что эти тела, даже самые маленькие, могут иметь диски, а следовательно, и планеты. Возможность существования планет подкрепляется наблюдениями, показавшими, что диски коричневых карликов претерпевают изменения, включая снижение максимума в инфракрасном излучении силикатов, свидетельствующее о слипании частиц пыли. Подобные изменения наблюдаются и в дисках вокруг более крупных звезд, указывая на рост зародышей планет. Диски коричневых карликов слишком скудны для образования планет размером с Юпитер, но в них достаточно вещества для формирования объектов, подобных Урану или Нептуну. Некоторые астрономы заявляют, что обнаружили планеты у коричневых карликов, но ни одно из этих открытий пока не подтверждено.
Таким образом, астрономы нашли планеты по крайней мере у одной нейтронной звезды, астероиды и кометы вокруг более чем дюжины белых карЛИКОВ и признаки ранних стадий их формирования вблизи коричневых карликов. В конечном счете, исследования этих и других внесолнечных систем преследуют две цели. Первая - узнать как можно больше о нашей Солнечной системе, в частности, о ее эволюции и крупномасштабной структуре. Эти характеристики трудно понять за короткое время, да еще находясь внутри системы. Мы надеемся определить статус Солнечной системы: типичная ли она или особенная? При всем разнообразии планетных систем формируются ли они одинаковым путем? Подобие химического состава астероидов Солнечной системы и вещества, падающего на белые карлики, намекает на положительный ответ на данный вопрос. Вторая цель - понять, насколько широко распространена жизнь во Вселенной. Среди наших галактических соседей коричневых карликов примерно столько же, сколько и звезд. Может ли ближайший к Солнцу объект оказаться еще не открытым коричневым карликом? Могут ли ближайшие к Солнечной системе планеты принадлежать коричневому карлику? Спутник для широкопольных инфракрасных обзоров [Wide-field Infrared Survey Explorer. WISE), который NASA планирует запустить в конце года, может открыть несколько коричневых карликов, расположенных ближе известных ближайших звезд. Формирование планет земного типа вблизи коричневых карликов могло бы не только расширить область потенциальных мест нашего обитания, но и открыть захватывающую возможность того, что ближайшая к нам внеземная жизнь просыпается по утрам в лучах коричневого карлика.
Наконец, наличие астероидов и комет вокруг белых карликов повышает вероятность не только сохранения планет после гибели солнцеподобных звезд, но и возможность продолжения на них жизни при условии, что биосфера сможет приспособиться к изменившимся условиям вблизи мертвой звезды. В конце концов, быть может, окрестности белого карлика - не такое уж мрачное место. Авторы статьи: Майкл Вернер и Майкл Юра (перевод В.Г. Сурдин)
| ||||||||||||||||||||||||||||||||||||||||
|