Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://hea-www.harvard.edu/astrostat/talks_1011/haiku_ksm_20100927.pdf
Äàòà èçìåíåíèÿ: Mon Sep 27 20:12:22 2010
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 05:54:36 2012
Êîäèðîâêà:
Hierarchical Bayesian Models for Type Ia SN Light Curves, Dust and Cosmic Distances

Kaisey S. Mandel Harvard University 27 September 2010
Monday, September 27, 2010 1


Hierarchical Brings deep knowledge from data Distant star glows, fades. -Bob Kirshner

Monday, September 27, 2010

2


Cosmological Energy Content

Monday, September 27, 2010

3


!"##$%&'%()*"+$(
!

!"##$%&
!"!#!$%&!'!(%()*(%(+

Supernova Cosmology: Constraining Cosmological Parameters using Distance vs.Velocity

! !

!

"( : (

!

!

!"#$%&'(#)*+,% ('(-!.%*"#$%/01#% 12)/+%,+$,0)()(3 45'/"$)'(%'6%7%% 1)$2%,+*#2)6$8

> (

!

!

A : , *

!

! , 7

Monday, September 27, 2010

AAS 215

AAS 215

*+,+-./01+E+./.2+34
4


Standard Candle Principle
1. Know or Estimate Luminosity L of a Class of Astronomical Objects 2. Measure the apparent brightness or flux F 3. Derive the distance D to Object using Inverse Square Law: F = L / (4 D)

Monday, September 27, 2010

5


Type Ia Supernovae are Nearly Standard Candles
· · · ·
Progenitor : C/O White Dwarf Star accreting mass leads to instability Thermonuclear Explosion: Deflagration/Detonation Nickel to Cobalt to Iron Decay + radiative transfer powers the light cur ve SNe Ia progenitors have nearly same mass, therefore energy
6
Monday, September 27, 2010 6

Credit: FLASH Center


Type Ia Supernova Apparent Light Curve
6 8

H!9
Obs. Mag. ! kc ! mwx

10 12 14 16 18 20 22 SN2005eq (CfA3+PTEL) !10 0 10 20 30 40 Obs. Days Since Bmax

J!7 I!4 R!2 V B+2
50 60

Monday, September 27, 2010

7


Reading the Wattage of a SN Ia: Empirical Correlations

· ·

Width-Luminosity Relation: an obser ved correlation (Phillips) Obser ve optical SN Ia Light Cur ve Shape to estimate the peak luminosity of SN Ia more precisely: ~0.5 mag to ~0.2 mag error Color-Luminosity Relation

·

Intrinsically Brighter SN Ia have broader light curves and are slow decliners

8
Monday, September 27, 2010 8


I will show you fear in a handful of Dust
1.5 1 0.5 0 0.6 0.4 0.2 0 !0.2 !0.4 1 0.5 0 !0.5 !17 Apparent Intrinsic !17.5 !18 RV = 3.1 RV = 2.4 RV = 1.7

B!V

V!R

V!I

Random Dust Effects: 1. Redder 2. Dimmer

MV or V0!µ

!18.5

!19

!19.5

Monday, September 27, 2010

9


Obser ve in NIR to see through dust

· · · ·

Host Galaxy Dust presents a major systematic uncertainty in supernova cosmology inference Dust extinction has significantly reduced effect in NIR bands NIR SN Ia are good standard candles Observe in NIR!: PAIRITEL /CfA
10
10

Monday, September 27, 2010


Statistical inference with SN Ia

· · ·

SN Ia cosmology inference based on empirical relations Statistical models for SN Ia are learned from the data Several Sources of Randomness & Uncertainty 1. Photometric errors 2. Intrinsic Variation and Correlations between L, Light Cur ve Shape, Color = Population Distribution of SN Ia 3. Random Peculiar Velocities in Nearby Hubble Flow 4. Host Galaxy Dust: extinction and reddening.

·

How to incorporate this all into a coherent statistical model? Hierarchical Bayesian Model!
11
11

Monday, September 27, 2010


Directed Acyclic Graph for SN Ia Inference with Hierarchical Modeling
· · · ·
Intrinsic Randomness Dust Extinction & Reddening Peculiar Velocities Measurement Error
Dust Pop

"Training" - Learn about Populations
A
s V s ,RV

µs AppLCs

z

s

Generative Model Global Joint Posterior Probability Density Conditional on all SN Data
Monday, September 27, 2010

AbsLC

s

D

s

Training SN Ia AbsLC Pop
p Ap ,RV V

s = 1, . . . , NSN µp Prediction

AbsLC
12

p

AppLCp

D

p

12


Statistical Computation with Hierarchical SN Ia Models: The BayeSN Algorithm
BayeSN MCMC Convergence
3

·

V

Strategy: Generate a
Markov Chain to sample global parameter space (populations & all individuals) => seek a global solution

2.5 2

SN2001az

SN2001ba

A

1.5 1 0.5 0 3 2.5 2

SN2006cp

SN2007bz

V

A

1.5 1 0.5 0 10
0 1 2 3 0 1 2 3

·

Chain explores/samples trade-offs/degeneracies in global parameter space for populations and individuals

10

10

10 10

10

10

10

MCMC Sample

MCMC Sample

Multiple chains globally converge from random initial values
13

Monday, September 27, 2010


BayeSN MCMC strategy
· · · · ·
Gibbs Sampling Metropolis-Hastings Parameter Expansion Generalized Conditional Sampling Parallel chains to diagnose convergence
SN Ia AbsLC Pop Dust Pop
s As ,RV V

µs AppLCs

z

s

AbsLC

s

D

s

Training
p Ap ,RV V

s = 1, . . . , NSN µp Prediction

AbsLC

p

AppLCp

D

p

Monday, September 27, 2010

14


Results: Optical+NIR Hierarchical Inference
PTEL+CfA3 Light-curves
6 8
Apparent Magnitude

Marginal Posterior of Dust
0.6

AV

10 12 14 16 18 20 22 SN2005eq (CfA3+PTEL) !10 0 10 20 30 Phase 40

H!9 J!7 I!4 R!2 V
Extinction (mag)

0.5 0.4 0.3 0.2 0.1

SN2005eq

AH

B+2
0

50

60
0.35 0.3

0.3 0.4 0.5 Dust Law Slope R!1 V

0.3

0.4 R!1 V

0.5

6 8
Apparent Magnitude

H!9 J!7 I!4 R!2 V
SN2006ax (CfA3+PTEL) !10 0 10 20 30 Phase 40
Extinction (mag)

A

V

SN2006ax

10 12 14 16 18 20 22

0.25 0.2 0.15 0.1 0.05

AH

B+2
50 60

0

0.2

0.3 0.4 0.5 Dust Law Slope R!1 V

0.60.2

0.3

0.4 R!1 V

0.5

0.6
15

Monday, September 27, 2010


Improved Constraints from Combining Optical with Infrared Light Cur ves

3.5 3 2.5

P( P( P( E(

µ µ µ µ

| BV) | BVRI) | BVRIJH) |z) ± (300 km/s)

1.5 1 0.5 1.5 1 0.5 1.5

BV SN2002bo BVRI

PDF

2

SN2002bo
1.5 1

Extinction AV

1

BVRIJH

0.5 0 30.5

0.5 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

31

31.5

32

32.5

33

33.5

Distance Modulus µ

Distance Modulus µ

Monday, September 27, 2010

16


Improved Constraints from Combining Optical with Infrared Light Cur ves
4 3.5 3 P( P( P( E( µ µ µ µ | BV) | BVRI) | BVRIJH) |z) ± (300 km/s)
0.6 0.4 0.2

BV

SN2005ki:CSP

Extinction AV

2.5

0.6 0.4 0.2

BVRI

PDF

2 1.5 1 0.5 0 33.6

SN2005ki:CSP

0.6 0.4 0.2

BVRIJH

33.8

34

34.2

34.4

34.6

34.8

35

35.2

35.4

34

34.1

34.2

34.3

34.4

34.5

34.6

34.7

34.8

34.9

Distance Modulus µ

Distance Modulus µ

Monday, September 27, 2010

17


Nearby Optical+NIR Hubble Diagram
38 37 36

h = 0.72 !pec = 150 km/s

µ(pred)

35 34 33 32 31 1 0.5 0

110 BVRI(JH) SN Ia (CfA3+PTEL+lit)
4

Optical Optical+NIR

10 CV Pred Err (All, cz > 3000 km/s) = 0.14 mag (0.139 ± 0.011 intr.)

Difference

!0.5 !1

CV Pred Err (Opt only & cz > 3000 km/s) = 0.15 mag (0.148 ± 0.014 intr.) CV Pred Err (Opt+NIR & cz > 3000 km/s) = 0.11 mag (0.102 ± 0.019 intr.) 3000 5000 7000 10000 Velocity [CMB+Virgo] (km/s) 15000

Cross-Validated Distance Predictions (Opt+NIR) RMS Distance Prediction Error = 0.11 mag (5.5% in distance)
Monday, September 27, 2010 18


Summary
· · ·
Hierarchical models for SN Ia Light Cur ves, Dust,Distance BayeSN: MCMC for fitting hierarchical models for SN Ia SN Ia Optical+NIR: Constrain dust, predict distances better

References Mandel, K. , W.M. Wood-Vasey, A.S. Friedman, & R.P. Kirshner. Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared. 2009, ApJ, 704:629-651 Mandel, K., G. Narayan, & R.P. Kirshner. Type Ia Supernova Light Curve Inference: Hierarchical Modeling in the Optical and Near Infrared. 2010, in prep.
19
Monday, September 27, 2010 19