Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://qfthep.sinp.msu.ru/talks2013/bottomonia_krokovny.pdf
Äàòà èçìåíåíèÿ: Tue Jun 25 19:06:44 2013
Äàòà èíäåêñèðîâàíèÿ: Thu Feb 27 20:28:40 2014
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: m 8
Bottomonia & charmonia at B-factories
Pavel Krokovny
Budker Institute of Nuclear Physics, Novosibirsk, Russia

· Introduction · Bottomonium states · Zb(10610) and Zb(10650) · Charmonium states · Study of X, Y, Z states · Evidence for 2 · Summary

QFTHEP 2013


Introduction
(4S): 433 fb-1 (3S): 30 fb-1 (2S): 14 fb-1 (5S): 121 fb-1 (4S): 703 fb-1

Heavy Quarkonia are ideal tool for testing QCD

2


In analysis of (5S) hb(mP)+- and (5S) (nS)+-
hb(1P) yield / 10MeV hb(1P) yield / 10MeV

Discovery of Zb

fit Mmiss(+­) in M(hb) bins

M(hb),

GeV/c2

M(hb), GeV/c2

PRL 108, 122001 (2012)

3


Summary of Zb parameters
Average over 5 channels M1 = 10607.2±2.0 MeV 1 = 18.4±2.4 MeV
M(BB*)=10604.8 ± 0.4 MeV

M2 = 10652.2±1.5 MeV 2 = 11.5 ± 2.2 MeV
M(B*B*)=10650.4 ± 0.8 MeV

4


Zb angular analysis
Z
b

(1 06 10 )

IM EL R eP ll Be

RY INA

Z

b

(1 06 50 )

Angle between prompt pion and beam axis

+- helicity angle

Angle between planes formed by (+-) and (, beam axes)

Confirms JP=1+ hypothesis
6D amplitude analysis of decays (5S) (nS)+
-

5


(5S)B*B(*): Selection
Masses of Zb(10610) and Zb(10650) are close to BB* and B*B* threshold. Search for Y(5S) Zb decay with ZbB(*)B*; reconstruct only one B and prompt pion

Data

2body (5S) decays

B*B*

Data (B signal)

BB* BB
Data (B side bands)

Effective B fraction: Br[Bf] = 1.4 x 103
0[K ,

3body (5S)>B(*)B(*) decays & ISR to (4S): P(B)<0.9 GeV/c RY

Charged B: D ,K] J/[] K Neutral B: D+[K] , J/[] K*0 , D*+[K,K0,K]



IM EL PR elle B

INA

6


(5S)B*B(*): Fit
Recoil mass to B combinations

MC: B*B
IM EL PR elle B

Y AR IN

BB* B*B*

MC: B*B*
(shifted by 45MeV)

Red histogram: right charge combination B; Hatched histogram: wrong charge combination; The curve show the fit to the data. Fit yields: N(BB) = 0.3 ± 14 N(BB*) = 184 ± 19 (9.3)
arXiv:1209.6450

N(B*B*) = 82 ± 11 (5.7) 7


(5S)B*B(*): Search for Zb
BB* Zb(10610)
8
Zb(10610) + Zb(10650) PhSp Zb(10610)+ PhSp Zb(10610) + Zb(10650) + PhSp

B*B*

Zb(10650)
6.8
Zb(10650) alone PhSp Zb(10650)+ PhSp

Points represent the data. Curves show the fit with various models. Hatched histogram is the background contribution.

IM EL PR elle B

RY INA

arXiv:1209.6450

B*B* candidates are well described by Zb(10650) only contribution. BB* can be described by two models: Zb(10610) + Zb(10650); Zb(10610) + non-resonant amplitude.

8


(5S) branching fractions: BB < 0.60% (90%CL) BB* = 4.25 ± 0.44 ± 0.69% B*B* = 2.12 ± 0.29 ± 0.36%

Zb branching fractions

Assuming Zb decaying to (nS), hb(mP) and B(*)B*only:

arXiv:1209.6450

IM EL PR elle B

RY INA

B(*)B* is the dominant mode of Zb decays

9


(5S)(nS)0
arXiv:1207.4345

0


(1,2,3S)+, e+e, (2S)(1S)+ e+e0
0

+0
(1S)

0

+ + 0
(2S)

0

(2S) (2S) (3S) (1S)

reflection

BF[(5S)(1S)00] = (2.25±0.11±0.20) 103 BF[(5S)(2S)00] = (3.79±0.24±0.49) 103 Consistent with ½ of Y(nS)+

IM EL R eP ell B

RY INA

10


(2S)00 Dalitz analysis
arXiv:1207.4345

with Z

b

0

w/o Zb

0

IM EL PR elle B

Y AR IN

Zb0 resonant structure is observed in (2S)0

0

Statistical significance of Zb0(10610) signal is 5.3 (4.9 with systematics) Zb0(10650) signal is not significant (~2), not contradicting with its existence + 2 0(10610) mass from the fit M=10609 ± 8 ± 6 MeV/c2 M(Zb )=10607±2 MeV/c Z
b

11


(1S)00 Dalitz analysis
Dalitz analysis with Z
b 0

w/o Zb

0

IM EL PR elle B

RY INA

Signals of both Zb0 are not significant. Data is not contradicting with their existence. arXiv:1207.4345
12


Update of X(3872) J/+
Update using 772 106 BB PRD 84, 052004 (2011)

-

Observed 10 years ago by Belle in B J/+-K PRL 91, 262001 (2003)

M(3872)=3871.84 ± 0.27 ± 0.19 MeV/c2;

(3872)<1.2 MeV @ 90% CL
13

Mass difference of X(3872) from B+ and B0: M = -0.69 ± 0.97 ± 0.19 MeV/c2


Search for charged X
Charged partner can exist if X(3872) is exotic. Search for X(3872)+ in J/+

B

0

K-+J/

B

+

K0+J/

B(B B(B

0 +

X+K-)xB(X
+ 0

+ +

J/+)<4.2 10-6 J/+ )<6.1 10-6

X K )xB(X

PRD 84, 052004 (2011)
14


Search for C-odd partner of X(3872)
' no X(3872)

?

(c1)

15


Evidence for

2

2

c1

c1 was predicted, (

2

c1)=260 KeV

Godfrey & Isgur, PRD 21, 189 (1985); Eichten, Lane & Quigg, PRL 89 16202 (2002) & PRD 69, 094019 (2004)

'K, ' c1
IM EL PR elle B

RY INA

2K,

2

c1

First 2 evidence 2 significance is 4.2 including systematics (2) = 4 ± 6 MeV from the fit

16


e+e

-

J/+- and (2S)+-by ISR
+- (2S)+-

arXiv: 1211.6271 PRD 86 051102 (2012) Y(4360): M = 4340 ± 16 ± 9 MeV/c Y(4260): M = 4245 ± 5 ± 4 MeV/c = 114 ± 15 ± 7 MeV
2 2

= 94 ± 32 ± 13 MeV Y(4660): M = 4669 ± 21 ± 3 MeV/c = 104 ± 48 ± 10 MeV

2

Consistent with previous Belle results
17


e+e- J/ by ISR

First time (4040) and (4160) have been observed in final states not involving charm meson pair. No signal from Y(4260/4360/4660). arXiv:1210.7550
18


X(3915) J/ in two-photons collisions
7.6 significance M = 3919.4 ± 2.2 ± 1.6 MeV/c = 13 ± 6 ± 3 MeV JP=0+ Consistent with older studies by BaBar & Belle
2

PRD 86 072002 (2012)

19


Summary
New results on bottomonium states come from B factories: · Observation of Zb+(10610) and Zb+(10650) decays to BB* and B*B main decay mode, supporting "molecular" hypothesis
*

· 6D amplitude analysis of (5S) (nS)+- confirmed JP=1+ for both Z · Evidence for neutral partner Zb(10610) in analysis of (5S) consistent with expectation from isospin ... and on charmonium states: · No charged or C-odd partners of X(3872) have been found · A first evidence of 2 is obtained in BKc1 decay

b

(2S)00

· Y(4260/4360/4660) are seen in (1,2S)+-, however no evidence in J/
20


Back up

21


Comparison with (nS)+
Fit to the Y1S+- data

-

Fit to the Y2S+- data

Background subtracted YnS00 data
22


Heavy quark structure in Z
Wave func. at large distance ­ B(*)B* 1- 1- - - ' Zb = 0bb 1 - 1 0Qq Qq 2 2 bb 1- 1- - - Zb = 0bb 1 + 1 0Qq Qq 2 2 bb Explains · Why hb is unsuppressed relative to

b

Bondar, Garmash, Milstein, Mizuk, Voloshin Phys.Rev.D 84 054010



· Relative phase ~0 for and ~1800 for hb · Production rates of Zb(10610) and Zb(10650) are similar · Widths ­"­ Predicts · Existence of other similar states Other Possible Explanations · Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552) · Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492) · Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)

23


Observation of (5S) hb(nP)+
PRL 108, 032001 (2012)

-

spin-flip

=
no spin-flip

for hb(1P) for hb(2P)

Process with spin flip of heavy quark is not suppressed: mechanism of (5S) hb(nP) +- decay violates Heavy Quark Spin Symmetry

24


Search for decay hb b
Decay chain
+ (5S) Zb hb (nP) + b(mS)

reconstruct Use missing mass to identify signals

MC simulation true + fake
-

M(b)
fake + true
-

Mmiss(+- ) Mmiss(+-) ­ Mmiss(+-) + M[hb]
true + true
-

Approach:

fit Mmiss(+-) spectra in Mmiss(+-) bins

M(hb)

hb(1P) yield vs. Mmiss(+-) search for b(1S) signal
25


Observation of h
hb(1P) b(1S) 15

b

b(1S)
potential models : = 5 ­ 20 MeV

M [b(1S)] = 9402.4 ± 1.5 ± 1.8 MeV/c2 [b(1S)] = 10.8+4..0+ 4..5 MeV -3 7 - 2 0 [hb(1P) b(1S)] = (49.2 ± 5.7
+5.6 -3.3

)%

Godfrey & Rosner : BF = 41%

hb(2P) b(1S) 9

MHF [b(1S)] = 57.9 ± 2.3 MeV/c2

PRL 109, 232002 (2012)

26


Evidence of h
hb(2P) b(2S)
4.2

b

b(2S)
+2.8 -1.9

M [b(2S)] = 9999.0 ± 3.5 [b(2S)] = 10.8
+4.0 + 4.5 -3.7 - 2.0

MeV/c2

MeV
+6.8 -7.7

[hb(2P) b(2S)] = (47.5 ± 10.5 MHF [b(2S)] = 24.3
+4.0 - 4.5

)%

MeV/c2

MHF = 23.5 ±4.7 MeV Lattice Meinel PRD82,114502(2010)
PRL 109, 232002 (2012)

27


(5S) (1D)

+-

53S1

+-

· First and only one L=2 state found in radiative decay chain CLEO(2004): (3S)b(2P)(1D)b(1P)(1S) · Belle measured a new production chain (5S)(1D)+-b(1P)+-(1S)+- Y(2S)
CLEO M = 10161.1±0.6±1.6 MeV B[(3S)(1D)(1S)] = (2.5±0.5±0.5)â10-5 Belle preliminary B[(5S)(1D)+(1S)+-] = (2.0±0.4±0.3)â10-4 Y(1D)

statistical significance 9s

Y(2S)[Y+-][] reflection


(2S) (1S)


+-

0

[(2S) (1S)]=(3.41 ± 0.37 ± 0.35) [(2S) (1S)0]< 4.3 10-5
PRD 87, 011104(R) (2013)

10-4

Phys.Rev.D 84 092003

[(2S) (1S)]=(2.39 ± 0.31 ± 0.14) 10-4 29 [(3S) (1S)]< 1.0 10-4


Observation of (5S) (1,2S)
MM(+-0) · Three modes: · (1,2S)[+-] [+-0] · (2S)[(1S)+-] [] · (1S)[+-] '[+-]

M()
B[(5S) (1S)] = (7.3±1.6±0.8) 10 B[(5S) (2S)] = (38 ± 4 ± 5) 10-4 B[(5S) (1S)'] < 1.2 10
-4 -4

pr el im in ar y

30