Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://theory.sinp.msu.ru/~tarasov/cited.ps
Äàòà èçìåíåíèÿ: Mon Apr 28 01:15:11 2008
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 19:55:01 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: herschel
List of Articles Citing My Articles.
(List without self­citations).
V. E. Tarasov, ''Quantum computer with mixed states and four­valued logic'',
Journal of Physics A, Vol.35. (2002) pp.5207­5235.
1) Hiroaki Terashima, Masahito Ueda,
A non­unitary quantum circuit
International Journal of Quantum Information, Vol.4. (2005) pp.633­647.
A non­unitary quantum circuit
e­Print Archive: quant­ph/0304061. (Ref. 20.)
2) Yoshihiro Nambu, Kazuo Nakamura,
On the matrix representation of quantum operations
e­Print Archive: quant­ph/0504091. (Ref. 14.)
3) Attila Karpati, Zsolt Kis, Peter Adam,
Engineering mixed states in a degenerate four­state system
Physical Review Letters, Vol.93. No.19. (2004) 193003. (Ref. 18.)
e­Print Archive: quant­ph/0412087. (Ref. 18.)
4) V.V. Belokurov, E.Yu. Bunkova, O.D. Timofeevskaya,
Conditional geometric phase shift for mixed state
Physics Letters A, Vol.329. No.4­5. (2004) pp.257­261. (Ref. 3.)
5) A. Karpati, Z. Kis, P. Adam,
Robust state preparation in a degenerate four­state system
Acta Physica Hungarica B: Quantum Electronics, Vol.23. No.1­2. (2005) pp.41­47. (Ref. 8.)
6) A. SaiToh, M. Kitagawa,
Matrix­product­state simulation of an extended Bruschweiler bulk­ensemble database search
Physical Review A, Vol.73. No.6. (2006) 062332. (Ref. 19.)
7) Rong Wu, Alexander Pechen, Constantin Brif, Herschel Rabitz,
Controllability of open quantum systems with Kraus­map dynamics
Journal of Physics A: Math. Theor. Vol.40. (2007) pp.5681­5693.
e­Print Archive: quant­ph/0611215 (Ref. 23.)
8) M. Abdel­Aty,
Geometric phases for a three­level Lambda­type system in one­dimensional photonic band
gaps
Applied Physics B. Laser and Optics, Vol.88. No.1. (2007) pp.29­36. (Ref. 29.)
1

V.E. Tarasov, ''Quantization of non­Hamiltonian and Dissipative Systems'',
Physics Letters A, Vol.288. No.3/4. (2001) pp.173­182.
1) Massimo Blasone, Petr Jizba, Hagen Kleinert,
Path­integral approach to 't Hooft's derivation of quantum physics from classical physics
Physical Review A, Vol.71. No.5. (2005) 052507. (Ref. 55.)
e­Print Archive: quant­ph/0409021. (Ref. 52.)
2) M. Blasone, P. Jizba,
Quantum mechanics of the damped harmonic oscillator
Canadian Journal of Physics, Vol.80. No.6. (2002) pp.645­660. (Ref. 9.)
3) E. Alfinito, G. Vitiello,
Time­reversal, loop­antiloop symmetry and the Bessel equation
Modern Physics Letters B, Vol.17. No.23. (2003) pp.1207­1218.
Time reversal violation as loop antiloop symmetry breaking: The Bessel equation, group con­
traction and dissipation.
e­Print Archive: hep­th/0210129. (Ref. 6.)
4) Giuseppe Vitiello,
How to deal with the arrow of time in quantum field theory
Talk given at 24th International Workshop on Fundamental Problems of High Energy Physics
and Field Theory, Protvino, Russia, 27­29 Jun 2001.
e­Print Archive: hep­th/0110182. (Ref. 41.)
5) Arkadiusz Jadczyk,
Simultaneous measurement of non­commuting observables and quantum fractals on complex
projective spaces
Chinese Journal of Physics, Vol.43. No.2. (2005) pp.301­328. (Ref. 79.)
e­Print Archive: quant­ph/0311081. (Ref. 87.)
6) A. Luks, V. Perinova,
Canonical quantum description of light propagation in dielectric media
Progress in Optics, Vol.43. (2002) pp.295­431.
7) V.G. Kupriyanov, S.L. Lyakhovich, A.A. Sharapov,
Deformation quantization of linear dissipative systems
Journal of Physics A, Vol.38. No.37. (2005) pp.8039­8051. (Ref. 17.)
e­Print Archive: quant­ph/050523. (Ref. 16.)
2

8) D.M. Gitman, V.G. Kupriyanov,
Canonical quantization of non­Lagrangian theories and its application to damped oscillator
and radiating point­like charge
e­Print Archive: hep­th/0605025. (Ref. 45.)
9) G. Dito, F.J. Turrubiates,
The damped harmonic oscillator in deformation quantization
Physics Letters A, Vol.352. No.4/5. (2006) pp.309­316. (Ref. 7.)
10) W.H. Richardson,
Stratified quantization approach to dissipative quantum systems: Derivation of the Hamilto­
nian and kinetic equations for reduced density matrices
Annals of Physics, Vol.321. No.6. (2006) pp.1296­1326. (Ref. 8.)
11) Giuseppe Vitiello,
Relating di#erent physical systems through the common QFT algebraic structure
e­Print Archive: hep­th/0610094. (Ref. 31.)
12) Z.E. Musielak,
Standard and non­standard Lagrangians for dissipative dynamical systems with variable co­
e#cients
Journal of Physics A, Vol.41. No.5. (2008) 055205. (Ref. 47.)
3

V.E. Tarasov, ''Pure stationary states of open quantum systems'',
Physical Review E, Vol.66. (2002) 056116 (e­Print: quant­ph/0311177)
1) P. Van, T. Fulo,
Stability of stationary solutions of the Schrodinger­Langevin equation
Physics Letters A, Vol.323. No.5­6. (2004) pp.374­381. (Ref. 21.)
e­Print Archive: quant­ph/0304190. (Ref. 21.)
2) Mathias Michel, Jochen Gemmer, Guenter Mahler,
Heat conductivity in small quantum systems: Kubo formula in Liouville space
The European Physical Journal B, Vol.42. No.4. (2004) pp.555­559. (Ref. 16.)
e­Print Archive: cond­mat/0503549. (Ref. 16.)
3) Mathias Michel, Jochen Gemmer, Guenter Mahler,
Quantum heat transport: perturbation theory in Liouville space
Physica E, Vol.29. No.1­2. (2005) pp.129­135.
e­Print Archive: cond­mat/0507642. (Ref. 16.)
4) E.A. Weiss, G. Katz, R.H. Goldsmith, M.R. Wasielewski, M.A. Ratner, R. Koslo#, A.
Nitzan,
Electron transfer mechanism and the locality of the system­bath interaction: A comparison
of local, semilocal, and pure dephasing models
Journal of Chemical Physics, Vol.124. No.7. (2006) 074501. (Ref. 1.)
5) M. Michel, J. Gemmer, G. Mahler,
Microscopic quantum mechanical foundation of Fourier's law
International Journal of Modern Physics B, Vol.20. No.2. (2006) pp.4855­4883. (Ref. 79.)
e­Print Archive: cond­mat/0611612. (Ref. 79.)
4

V.E. Tarasov, ''Quantization of non­Hamiltonian Systems'',
Theoretical Physics, Vol.2. (2001) pp.150­160.
http : //www.ssu.samara.ru/ press/journal/theor phys 2 engl.html
1) Arkadiusz Jadczyk,
Simultaneous measurement of non­commuting observables and quantum fractals on complex
projective spaces
Chinese Journal of Physics, Vol.43. No.2. (2005) pp.301­328. (Ref. 78.)
e­Print Archive: quant­ph/0311081 (Ref. 87.)
V.E. Tarasov, ''Two­loop beta­function for nonlinear sigma model with a#ne­
metric manifold'', Modern Physics Letters A, Vol.9. (1994) pp.2411­2419.
1) M.Yu. Kalmykov,
A#ne­metric quantum gravity with extra local symmetries
Classical and Quantum Gravity, Vol.14. No.2. (1997) pp.367­378. (Ref. 12.)
e­Print Archive: hep­th/9512058. (Ref. 12.)
V.E. Tarasov, ''Bosonic String in A#ne Metric Curved Space'',
Physics Letters B, Vol.323. (1994) pp.296­304.
1) M.Yu. Kalmykov, P.I. Pronin,
The one­loop divergences of the linear gravity with the torsion terms in tetrad approach
Modern Physics Letters A, Vol.13. No.35. (1998) pp.2827­2837. (Ref. 10.)
e­Print Archive: gr­qc/9811022. (Ref. 10.)
2) M.Yu. Kalmykov,
A#ne­metric quantum gravity with extra local symmetries
Classical and Quantum Gravity, Vol.14. No.2. (1997) pp.367­378. (Ref. 12.)
e­Print Archive: hep­th/9512058. (Ref. 12.)
3) Friedrich W. Hehl, J. Dermott McCrea, Eckehard W. Mielke, Yuval Ne'eman,
Metric­a#ne gauge theory of gravity: field equations, Noether identities, world spinors, and
breaking of dilation invariance.
Physics Reports, Vol.258. No.1/2. (1995) pp.1­171. (Ref. 669.)
5

A.P. Demichev, M.Z. Iofa, Yu.A. Kubyshin, V.E. Tarasov,
''Possible manifestations of multidimensionality of space­time in a simple mode'',
Physics of Atomic Nuclei, Vol.56. (1993) pp.1582­1584.
(Yadernaia Fizika, Vol.56. No.11. (1993) pp.222­226.)
1) A.P. Demichev, Yu.A. Kubyshin, J.I. Perez Cadenas,
Manifestations of space­time multidimensionality in scattering of scalar particles
Physics Letters B, Vol.323. (1994) pp.139­146.
e­Print Archive: hep­th/9310093. (Ref. 5.)
V.E. Tarasov, ''Quantum dissipative systems: I. Canonical quantization and
quantum Liouville equation'',
Theoretical and Mathematical Physics, Vol.100. No.3. (1994) pp.1100­1112.
1) B.A. Arbuzov,
On a quantum­mechanical description of motion with friction
Theoretical and Mathematical Physics, Vol.106. No.2. (1996) pp.300­305. (Ref. 4.)
2) G. Georgiev, I. Georgiev,
The least action and the metric of an organized system
Open Systems and Information Dynamics, Vol.9. No.4. (2002) pp.371­380. (Ref. 19.)
3) R.J. Wysocki,
Quantum equations of motion for a dissipative system
Physical Review A, Vol.61. No.2. (2000) 022104. (Ref. 6.)
4) A.O. Bolivar,
Quantization of non­Hamiltonian physical systems
Physical Review A, Vol.58. No.6. (1998) pp.4330­4335. (Ref. 18.)
5) C.P. Dettmann, G.P. Morriss,
Hamiltonian formulation of the Gaussian isokinetic thermostat
Physical Review E, Vol.54. No.3. (1996) pp.2495­2500. (Ref. 23.)
6) V.S. Kirchanov,
Applying the Linblad equation to quantum dissipative systems
Theoretical and Mathematical Physics, Vol.148. No.2. (2006) pp.1117­1122. (Ref. 1.)
7) R.J. Wysocki, Hydrodynamic quantization of mechanical systems
Physical Review A, Vol.72. No.3. (2005) 032113. (Ref. 14.)
6

V.E. Tarasov, ''Fractional generalization of Liouville equations'',
Chaos, Vol.14. (2004) pp.123­127. (nlin.CD/0312044)
1) A.A. Stanislavsky,
Fractional oscillator
Physical Review E, Vol.70. No.5. (2004) 051103. (Ref. 19.)
2) J. Bisquert,
Interpretation of a fractional di#usion equation with nonconserved probability density in
terms of experimental systems with trapping or recombination
Physical Review E, Vol.72. No.1. (2005) 011109. (Ref. 6.)
3) El­Nabulsi Ahmad­Rami,
Fractional approach to nonconservative Lagrangian dynamical systems
Fizika A, Vol.14. No.4. (2005) pp.289­298. (Ref. 13.)
4) A.A. Stanislavsky,
Hamiltonian formalism of fractional systems
European Physical Journal B, Vol.49. No.1. (2006) pp.93­101. (Ref. 17.)
5) E. Goldfain,
Complexity in quantum field theory and physics beyond the standard model
Chaos, Solitons and Fractals, Vol.28. No.4. (2006) pp.913­922. (Ref. 10.)
6) V.V. Kobelev,
The variant of post­Newtonian mechanics with generalized fractional derivatives
Chaos, Vol.16. No.4. (2006) 043117. (Ref. 3.)
7) M. Praprotnik, K. Kremer, L. Delle Site,
Adaptive molecular resolution via a continuous change of the phase space dimensionality
Physical Review E, Vol.75. No.1. (2007) 017701. (Ref. 34.)
8) Nirupam Roy,
On spherically symmetrical accretion in fractal media
Monthly Notices of the Royal Astronomical Society: Letters, Vol.378. No.1. (2007) L34­L38.
e­Print Archive: arXiv 0704.1110 (Ref. 28.)
9) Nirupam Roy, Arnab K. Ray,
Critical properties of spherically symmetric accretion in a fractal medium
Monthly Notices of the Royal Astronomical Society: Letters, Vol.380. No.2. (2007) pp.733­
740.
e­Print Archive: arXiv 0704.3681 (Ref. 66.)
7

10) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1149.)
11) M. Praprotnik, K. Kremer, L. Delle Site,
Fractional dimensions of phase space variables: a tool for varying the degrees of freedom of
a system in a multiscale treatment
Journal of Physics A, Vol.40. No.15 (2007) pp.F281­F288. (Ref. 8.)
V.E. Tarasov,
''Fractional systems and fractional Bogoliubov hierarchy equations'',
Physical Review E, Vol.71. No.1. (2005) 011102.
1) Tatiana V. Ryabukha,
On regularized solution for BBGKY hierarchy of one­dimensional infinite system
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA),
Vol.2. (2006) Paper 053. 8 pages. (Ref. 15.)
e­Print Archive: cond­mat/0605364. (Ref. 15.)
2) M. Praprotnik, K. Kremer, L. Delle Site,
Adaptive molecular resolution via a continuous change of the phase space dimensionality
Physical Review E, Vol.75. No.1. (2007) 017701. (Ref. 35.)
3) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1151.)
4) Fa­Jun Yu, Hong­Qing Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref. 11.)
5) M. Praprotnik, K. Kremer, L. Delle Site,
Fractional dimensions of phase space variables: a tool for varying the degrees of freedom of
a system in a multiscale treatment
Journal of Physics A, Vol.40. No.15. (2007) pp.F281­F288. (Ref. 9. )
8

V.E. Tarasov,
''Psi­series solution of fractional Ginzburg­Landau equation'',
Journal of Physics A 39 (2006) pp.8395­8407. (nlin.SI/0606070)
1) N. Korabel, G.M. Zaslavsky,
Transition to chaos in discrete nonlinear Schrodinger equation with long­range interaction
Physica A, Vol.378. No.2. (2007) pp.223­237. (math­ph/0607030) (Ref. 41.)
V.E. Tarasov, G.M. Zaslavsky,
''Dynamics with low­level fractionality'',
Physica A, Vol.368. No.2. (2006) pp.399­415.
1) A. Tofighi, H.N. Pour,
epsilon­expansion and the fractional oscillator
Physica A, Vol.374. No.1. (2007) pp.41­45. (Ref. 5.)
2) Fa­Jun Yu, Hong­Qing Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref. 9.)
3) E. Goldfain,
Fractional dynamics and the TeV regime of field theory
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.3. (2008)
pp.666­676. (Ref. 3.)
4) E. Goldfain,
Fractional dynamics and the Standard Model for particle physics
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.7. (2008)
pp.1397­1404. (Ref. 22.)
5) A. Tofighi, A.Golestani,
A perturbative study of fractional relaxation phenomena
Physica A, Vol.387. No.8­9. (2008) pp.807­1817. (Ref.15.)
6) W.H. Deng, C.P. Li,
The evolution of chaotic dynamics for fractional unified system
Physics Letters A, Vol.372. No.4. (2008) pp.401­407. (Ref. 10.)
9

V.E. Tarasov, G.M. Zaslavsky,
''Fractional dynamics of coupled oscillators with long­range interaction'',
Chaos, Vol.16. (2006) 023110. (13 pages)
1) N. Laskin, G. Zaslavsky,
Nonlinear fractional dynamics on a lattice with long range interactions
Physica A, Vol.368. No.1. (2005) pp.38­54.
e­Print Archive: nlin.SI/0512010. (Ref. 30.)
2) A.A. Stanislavsky,
Long­term memory contribution as applied to the motion of discrete dynamical systems
Chaos, Vol.16. No.4. (2006) 043105. (Ref. 9.)
3) C.J. Tessone, M. Cencini, A. Torcini,
Synchronization of extended chaotic systems with long­range interactions: An analogy to
Levy­flight spreading of epidemics
Physical Review Letters, Vol.97. No.22. (2006) 224101. (Ref. 27.)
4) E. Goldfain,
Fractional dynamics and the TeV regime of field theory
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.3. (2008)
pp.666­676. (Ref. 5.)
5) E. Goldfain,
Fractional dynamics and the Standard Model for particle physics
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.7. (2008)
pp.1397­1404. (Ref. 24.)
6) W.H. Deng, C.P. Li,
The evolution of chaotic dynamics for fractional unified system
Physics Letters A, Vol.372. No.4. (2008) pp.401­407. (Ref. 11.)
7) E.M. Rabei, I. Almayteh, S.I. Muslih, D. Baleanu,
Hamilton­Jacobi formulation of systems within Caputo's fractional derivative
Physica Scripta Vol.77. No.1. (2008) 015101. (Ref. 21.)
10

V.E. Tarasov, ''Fractional Fokker­Planck equation for fractal media'',
Chaos 15 (2005) 023102. (nlin/0602029)
1) T. Srokowski,
Non­Markovian Levy di#usion in nonhomogeneous media
Physical Review E, Vol.75. (2007) 051105. (Ref. 9.)
e­Print Archive: cond­mat/0611056. (Ref. 9.)
2) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1153.)
3) Fa­Jun Yu, Hong­Qing Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref. 10.)
4) A. Kaminska, T. Srokowski,
Mean first passage time for a Markovian jumping process
Acta Physica Polonica B, Vol.38. No.10. (2007) pp.3119­3131. (Ref. 10.)
V.E. Tarasov, ''Fractional generalization of gradient and Hamiltonian systems'',
Journal of Physics A 38 (2005) pp.5929­5943. (math/0602208)
1) Ion Doru Albu, Mihaela Neamtu, Dumitru Opris,
The geometry of fractional osculator bundle of higher order and applications
e­Print Archive: arXiv.org:0709.2000. (Ref. 8.)
2) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1154.)
3) F.J. Yu, H.Q. Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref. 15.)
4) E. Goldfain, Fractional dynamics and the TeV regime of field theory
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.3. (2008)
pp.666­676. (Ref. 4.)
5) E. Goldfain, Fractional dynamics and the Standard Model for particle physics
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.7. (2008)
pp.1397­1404. (Ref. 23.)
11

V.E. Tarasov, G.M. Zaslavsky,
''Fractional Ginzburg­Landau equation for fractal media'',
Physica A, Vol.354. (2005) pp.249­261.
1) A.A. Stanislavsky,
Hamiltonian formalism of fractional systems
The European Physical Journal B, Vol.49. No.1. (2006) pp.93­101. (Ref. 12.)
2) N. Laskin, G. Zaslavsky,
Nonlinear fractional dynamics on a lattice with long range interactions
Physica A, Vol.368. No.1. (2006) pp.38­54. (Ref. 42.)
3) O.P. Agrawal,
Fractional variational calculus and the transversality conditions
Journal of Physics A, Vol.39. No.33 (2006) pp.10375­10384. (Ref. 21.)
4) N. Korabel, G.M. Zaslavsky,
Transition to chaos in discrete nonlinear Schrodinger equation with long­range interaction
Physica A, Vol.378. No.2. (2007) pp.223­237. (math­ph/0607030) (Ref. 40.)
5) Zygmunt Bak,
Landau­Ginzburg theory of phase transitions in fractal systems
Phase Transitions, Vol.80. No.1­2. (2007) pp.79­87. (Ref. 3.)
6) S.A. Ktitorov,
Self­consistent theory of turbulence
Technical Physics Letters, Vol.33. No.8. (2007) 699­700. (Ref. 5.)
e­Print Archive: cond­mat/0702653. (Ref. 5.)
7) O.P. Agrawal,
Fractional variational calculus in terms of Riesz fractional derivatives
Journal of Physics A, Vol.40. No.24. (2007) pp.6287­6303. (Ref. 30.)
8) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1148.)
9) O.P. Agrawal,
Generalized Euler­Lagrange equations and transversality conditions for FVPs in terms of the
Caputo derivative
Journal of Vibration and Control, Vol.13. No.9­10. (2007) pp.1217­1237. (Ref. 14.)
12

10) O.P. Agrawal,
A general finite element formulation for fractional variational problems
Journal of Mathematical Analysis and Applications, Vol.337 No.1 (2008) pp.1­12. (Ref. 27.)
11) E. Goldfain,
Fractional dynamics and the TeV regime of field theory
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.3. (2008)
pp.666­676. (Ref. 7.)
12) E. Goldfain,
Fractional dynamics and the Standard Model for particle physics
Communications in Nonlinear Science and Numerical Simulation, Vol.13. No.7. (2008)
pp.1397­1404. (Ref. 26.)
13) O.P. Agrawal, D. Baleanu,
A Hamiltonian formulation and a direct numerical scheme for fractional optimal control
problems
Journal of Vibration and Control, Vol.13. No.9­10. (2007) pp.1269­1281. (Ref. 23.)
V.E. Tarasov, G.M. Zaslavsky,
''Nonholonomic constraints with fractional derivatives'',
Journal of Physics A, 39 (2006) pp.9797­9815
1) O.P. Agrawal,
Fractional variational calculus in terms of Riesz fractional derivatives
Journal of Physics A, Vol.40. No.24. (2007) pp.6287­6303. (Ref. 31.)
2) V. Gafiychuk, B. Datsko, V. Meleshko,
Analysis of fractional order Bonhoe#er­van der Pol oscillator
Physica A, Vol. 387. No.2­3. (2008) pp.418­424 (Ref. 8.)
V.E. Tarasov, G.M. Zaslavsky, ''Fractional dynamics of systems with long­range
space interaction and temporal memory'' Physica A. Vol.383. No.2. (2007)
pp.291­308. (math­ph/0702065)
1) A. Tofighi, A.Golestani,
A perturbative study of fractional relaxation phenomena
Physica A, Vol.387. No.8­9. (2008) pp.807­1817. (Ref. 29.)
13

V.E. Tarasov, ''Phase­space metric for non­Hamiltonian systems'',
Journal of Physics A, Vol.38. No.10/11. (2005) pp.2145­2155.
1) A. Sergi,
Non­Hamiltonian commutators in quantum mechanics
Physical Review E, Vol.72. No.6. (2006) 066125. (Ref. 13.)
e­Print Archive: quant­ph/0511076 (Ref. 13.)
2) M.E. Tuckerman, J. Alejandre, R. Lopez­Rendon, A.L. Jochim, G.J. Martyna,
A Liouville­operator derived measure­preserving integrator for molecular dynamics simula­
tions in the isothermal­isobaric ensemble
Journal of Physics A, Vol.39. No.19. (2006) pp.5629­5651. (Ref. 33.)
3) M.A. Cuendet,
The Jarzynski identity derived from general Hamiltonian or non­Hamiltonian dynamics re­
producing NVT or NPT ensembles
Journal of Chemical Physics, Vol.125. No.14. (2006) 144109. (Ref. 41.)
4) G.S. Ezra,
Reversible measure­preserving integrators for non­Hamiltonian systems
Journal of Chemical Physics, Vol.125. No.3. (2006) 034104. (Ref. 38.)
5) Alessandro Sergi, Paolo V. Giaquinta,
On the geometry and entropy of non­Hamiltonian phase space
Journal of Statistical Mechanics (2007) P02013. (Ref. 12.)
e­Print Archive: cond­mat/0511343. (Ref. 12.)
6) M. Romero­Bastida, R. Lopez­Rendon,
Anisotropic pressure molecular dynamics for atomic fluid systems
Journal of Physics A, Vol.40. (2007) 8585­8598. (Ref. 20.)
14

V.E. Tarasov,
''Stationary solutions of Liouville equations for non­Hamiltonian systems'',
Annals of Physics, Vol.316. No.2. (2005) pp.393­413.
1) M.E. Tuckerman, J. Alejandre, R. Lopez­Rendon, A.L. Jochim, G.J. Martyna,
A Liouville­operator derived measure­preserving integrator for molecular dynamics simula­
tions in the isothermal­isobaric ensemble
Journal of Physics A, Vol.39. No.19. (2006) pp.5629­5651. (Ref. 34.)
V.E. Tarasov
''Classical canonical distribution for dissipative systems'',
Modern Physics Letters B, Vol.17. No.23. (2003) pp.1219­1226. (cond­mat/0311536)
1) V.M. Somsikov,
Mechanism of irreversibility in a many­body systems
e­Print Archive: cond­mat/0507170. (Ref. 19.)
2) V.M. Somsikov,
Irreversibility in classical mechanics
e­Print Archive: physics/0601038. (Ref. 16.)
V.E. Tarasov, ''Stationary states of dissipative quantum systems'',
Physics Letters A, Vol.299. No.2/3. (2002) pp.173­178.
1) G. Dito, F.J. Turrubiates,
The damped harmonic oscillator in deformation quantization
Physics Letters A, Vol.352. No.4/5. (2006) pp.309­316. (Ref. 7.)
2) M. Michel, J. Gemmer, G. Mahler,
Microscopic quantum mechanical foundation of Fourier's law
International Journal of Modern Physics B, Vol.20. No.2. (2006) pp.4855­4883. (Ref. 78.)
e­Print Archive: cond­mat/0611612. (Ref. 78.)
V.E. Tarasov, ''Path integral for quantum operations'',
Journal of Physics A Vol.37. No.9. (2004) pp.3241­3257.
1) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1150.)
15

V.E. Tarasov, ''Continuous medium model for fractal media'',
Physics Letters A, Vol.336. No.2/3. (2005) pp.167­174.
1) M. Ostoja­Starzewski,
Towards thermoelasticity of fractal media
Journal of Thermal Stresses, Vol.30. No.9/10. (2007) pp.889­896. (Ref. 5.)
2) V.G. Ivancevic, T.T. Ivancevic, Appendix
Studies in Computational Intelligence, Vol.45. (2007) pp.601­649. (Ref. 1152.)
3) M. Materassi, G. Consolini,
Magnetic reconnection rate in space plasmas: A fractal approach
Physical Review Letters, Vol.99. No.17. (2007) 175002. (Ref. 12.)
4) M.A. Soare, R.C. Picu,
An approach to solving mechanics problems for materials with multiscale self­similar mi­
crostructure
International Journal of Solids and Structures, Vol.44. No.24. (2007) pp.7877­7890. (Ref.
27.)
5) M. Ostoja­Starzewski,
Towards thermomechanics of fractal media
Zeitschrift fur angewandte Mathematik und Physik, Vol.58. No.6. (2007) pp.1085­1096.
(Ref. 14.)
6) M. Ostoja­Starzewski,
On turbulence in fractal porous media
Zeitschrift fur angewandte Mathematik und Physik, Vol.59. (2008) to be published (Ref. 2.)
16

V.E. Tarasov, ''Fractional hydrodynamic equations for fractal media'',
Annals of Physics, Vol.318. No.2. (2005) pp.286­307.
1) M. Ostoja­Starzewski,
Towards thermoelasticity of fractal media
Journal of Thermal Stresses, Vol.30 No.9/10. (2007) pp.889­896. (Ref. 6.)
2) M.A. Soare, R.C. Picu,
An approach to solving mechanics problems for materials with multiscale self­similar mi­
crostructure
International Journal of Solids and Structures, Vol.44. No.24. (2007) pp.7877­7890. (Ref.
26.)
3) M. Ostoja­Starzewski,
Towards thermomechanics of fractal media
Zeitschrift fur angewandte Mathematik und Physik, Vol.58. No.6. (2007) pp.1085­1096.
(Ref. 15.)
4) M. Ostoja­Starzewski,
On turbulence in fractal porous media
Zeitschrift fur angewandte Mathematik und Physik, Vol.59. (2008) to be published (Ref. 2.)
V.E. Tarasov, ''Continuous limit of discrete systems with long­range interaction''
Journal of Physics A. Vol.39. No.48. (2006) pp.14895­14910. (arXiv:0711.0826)
1) E.M. Rabei, I. Almayteh, S.I. Muslih, D. Baleanu,
Hamilton­Jacobi formulation of systems within Caputo's fractional derivative
Physica Scripta Vol.77. No.1. (2008) 015101. (Ref. 20)
V.E. Tarasov, ''Map of discrete system into continuous''
Journal of Mathematical Physics. Vol.47. No.9. (2006) 092901. (24 pages)
(arXiv:0711.2612)
1) S. Namilae, D.M. Nicholson, P.K.V.V. Nukala, C.Y. Gao, Y.N. Osetsky, D.J. Ke#er,
Absorbing boundary conditions for molecular dynamics and multiscale modeling
Physical Review B, Vol.76. No.14. (2007) 144111. (Ref.27.)
17

V.E. Tarasov, ''Fractional variations for dynamical systems: Hamilton and La­
grange approaches'' Journal of Physics A. Vol.39. No.26. (2006) pp.8409­8425.
(math­ph/0606048)
1) F.J. Yu, H.Q. Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref.16.)
V.E. Tarasov, ''Electromagnetic field of fractal distribution of charged particles''
Physics of Plasmas. Vol.12. No.8. (2005) 082106 (9 pages). (physics/0610010)
1) W.H. Deng, C.P. Li,
The evolution of chaotic dynamics for fractional unified system
Physics Letters A, Vol.372. No.4. (2008) pp.401­407. (Ref. 9.)
V.E. Tarasov, ''Magnetohydrodynamics of fractal media'' Physics of Plasmas.
Vol.13. No.5. (2006) 052107. (12 pages) (arXiv:0711.0305)
1) M. Materassi, G. Consolini,
Magnetic reconnection rate in space plasmas: A fractal approach
Physical Review Letters, Vol.99. No.17. (2007) 175002. (Ref. 11.)
2) W.H. Deng, C.P. Li,
The evolution of chaotic dynamics for fractional unified system
Physics Letters A, Vol.372. No.4. (2008) pp.401­407. (Ref. 9.)
V.E. Tarasov, ''Multipole moments of fractal distribution of charges'' Modern
Physics Letters B. Vol.19. No.22. (2005) pp.1107­1118. (physics/0606251)
1) W.H. Deng, C.P. Li,
The evolution of chaotic dynamics for fractional unified system
Physics Letters A, Vol.372. No.4. (2008) pp.401­407. (Ref. 9.)
V.E. Tarasov, ''Fractional Liouville and BBGKI equations'',
J. Phys. Conf. Ser. 7 (2005) pp.17­33.
1) Fa­Jun Yu, Hong­Qing Zhang,
Fractional zero curvature equation and generalized Hamiltonian structure of soliton equation
hierarchy
International Journal of Theoretical Physics, Vol.46. No.12. (2007) pp.3182­3192. (Ref. 12.)
18