Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.allplanets.ru/novosti_2013_2.htm
Дата изменения: Thu Jan 14 21:01:11 2016
Дата индексирования: Sat Apr 9 22:55:23 2016
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п
Новости планетной астрономии
планетные системы
планетные системы
новости планетной астрономии
статьи
статистика
поиск
глоссарий
галерея
обновления
о сайте
ссылки

23 декабря 2013
Отношение масса-радиус для 63 планет с радиусами меньше 4 радиусов Земли
прямая ссылка на эту новость

Хотя в Солнечной системе нет планет с радиусами между 1 и 3.8 радиусов Земли, в Галактике планеты таких размеров широко распространены. По данным, полученным космическим телескопом им. Кеплера, примерно 24% звезд имеют планеты с радиусами от 1 до 4 земных и с периодами от 5 до 50 земных суток. Естественно возникает вопрос: каковы свойства этих планет? Где проходит граница между малыми гигантами вроде Урана и Нептуна и планетами земного типа?

Чтобы ответить на эти вопросы, Джеффри Марси (Geoffrey W. Marcy) и Лоурен Вайс (Lauren M. Weiss) проанализировали отношение масса/радиус для 63 планет, чьи радиусы оказались меньше 4 радиусов Земли, периоды - короче 100 земных суток, а массы измерены методом лучевых скоростей или методом тайминга транзитов. Также в данном анализе использовались параметры планет Солнечной системы.


Зависимость массы и средней плотности от радиуса для 63 планет, рассмотренных в работе. Серым цветом показаны планеты, чья масса была определена методом измерения лучевых скоростей родительских звезд. Бежевым цветом показаны планеты, чья масса была определена методом тайминга транзитов. Малиновыми буквами показаны планеты Солнечной системы. Синие квадраты (с указанием величины погрешностей) - средняя масса (слева) или плотность (справа) планет в диапазоне шириной 0.5 радиусов Земли. Голубой пунктирной линией показана аналитическая зависимость M ~ R^3.45 , справедливая для планет земного типа. Черной пунктирной линией показана зависимость M ~ R^0.8, справедливая для планет с большим содержанием летучих элементов. На правом грифике бледно-зеленой линией показана зависимость массы от радиуса для планеты земного состава.

Первое, что бросается в глаза при взгляде на графики - огромный разброс данных вокруг среднего тренда. Массы планет одного размера могут отличаться на порядок, что говорит как о значительных погрешностях измерений, так и о возможности принципиально разного состава, средней плотности и эволюции планет одинаковой массы. Однако, в общем и целом картина выглядит такой:

Для радиусов планет R > 1.5 радиусов Земли массу планеты можно оценить по формуле:

M/MЗемли = 3.24 (R/R Земли)0.8.

Для радиусов планет R < 1.5 радиусов Земли формула для массы меняется:

M/MЗемли = 1.08 (R/R Земли)3.45.

Граничное значение массы, разделяющее преимущественно планеты с земным (железокаменным) составом и планеты со значительной долей летучих (океаниды и мини-нептуны) оценивается в 2.7-3 масс Земли. При этом не стоит забывать, что данный вывод сделан для планет с периодами короче 100 земных суток, т.е. достаточно горячих - за снеговой линией граничное значение массы может быть гораздо меньше или вообще отсутствовать (т.е. содержать значительное количество летучих будут планеты любой массы).

Информация получена: http://arxiv.org/pdf/1312.0936.pdf

 

19 декабря 2013
Kepler-410A b: транзитный горячий нептун у яркой F-звезды
прямая ссылка на эту новость

Среди родительских звезд транзитных кандидатов Кеплера есть несколько достаточно ярких для того, чтобы можно было измерить частоты колебаний их фотосфер (этот метод изучения звезд называется астросейсмологией). Спектр колебаний звезды чувствителен к ее массе, радиусу, скорости вращения и даже возрасту, что позволяет достаточно точно определить ее свойства. Именно это было проделано со звездой KOI-42, демонстрирующей транзитный сигнал глубиной 331 ppm.

Дело осложнилось тем, что звезда KOI-42 (KIC 8866102, HD 175289) - двойная. Рядом с более ярким компонентом KOI-42A спектрального класса F и видимой звездной величиной +9.4 на расстоянии 1.6 угловых секунд находится более тусклый компонент KOI-42B спектрального класса К и видимой звездной величины +12.2. И заранее было не ясно, вокруг какого именно компонента вращается транзитный кандидат, и какова его природа. Разобраться во всем этом взялась группа европейских астрономов под руководством Винсента ван Эйлена (V. van Eylen).

Сначала ученые изучили фотометрию звезды, полученную в 'короткой' моде (т.е. снимавшуюся каждые 58.8 секунд). Это позволило им получить спектр колебаний фотосферы KOI-42A и довольно точно определить ее свойства. Масса звезды KOI-42A (получившей также имя Kepler-410A) оказалась равной 1.214 + 0.033 солнечных масс, радиус - 1.35 + 0.01 солнечных радиусов, светимость в 2.72 + 0.18 раза превысила солнечную. Возраст звезды оценили в 2.76 + 0.54 млрд. лет.

Потом ван Эйлен с коллегами получил кривые блеска KOI-42 с помощью космического телескопа им. Спитцера. Поскольку звезды KOI-42 имеют разную температуру (~6300 K у компонента A и ~4850 K у компонента B), отношение их светимости оказывается разным для разных длин волн. В оптическом диапазоне светимость компонента B составляет 8% от светимости компонента A, а в инфракрасной полосе Ks - уже 17%. Поэтому если бы планета вращалась вокруг компонента B, глубина транзита планеты увеличилась бы при переходе к инфракрасному диапазону, чего явно не наблюдается (глубина транзита, измеренного на Спитцере, составила 260 + 90 ppm). Таким образом, астрономы убедились, что планета вращается вокруг более яркой звезды.

Масса планеты Kepler-410A b пока не известна. Ее радиус - 2.84 + 0.054 радиусов Земли, т.е. планета попадает в размерный класс нептунов. Планета вращается вокруг своей звезды по эллиптической орбите с большой полуосью 0.1226 + 0.0047 а.е. (19.5 звездных радиусов) и эксцентриситетом 0.17 + 0.07, и делает один оборот за 17.83365 + 0.00005 земных суток.

Помимо всего прочего, ван Эйлен с коллегами определили наклон оси вращения звезды (он оказался равным 82.5 +7.5/-2.5њ), и сравнил его с наклонением орбиты планеты (87.72 + 0.15њ). Близость этих величин говорит о том, что орбита Kepler-410 A b мало наклонена к звездному экватору.

Интересно, что моменты наступления середины транзита планеты Kepler-410A b испытывают периодические колебания с амплитудой 33 минуты, что говорит о наличии в этой системе еще одного или нескольких тел. Гравитационным влиянием других планет можно объяснить и заметный эксцентриситет орбиты данной планеты. Однако подробный TTV-анализ системы Kepler-410A - дело будущего.

Информация получена: http://arxiv.org/pdf/1312.4938.pdf

 

 

18 декабря 2013
MOA-2011-BLG-262L b: спутник земной массы у свободно плавающей планеты-гиганта?
прямая ссылка на эту новость

Среди всех методов поиска экзопланет метод гравитационного микролинзирования занимает особое место. В отличие от метода измерения лучевых скоростей родительских звезд и транзитного метода, наиболее чувствительных к планетам на тесных орбитах, он наиболее чувствителен к планетам, находящимся вблизи снеговой линии и за ее пределами. С другой стороны, в отличии от метода прямого обнаружения экзопланет на ИК-снимках, метод гравитационного микролинзирования способен обнаруживать и холодные несветящиеся небесные тела, например, старые планеты, не принадлежащие какой-либо одной звезде и свободно плавающие в диске Галактики.

По данным, полученным наземными микролинзовыми обзорами, 17 +6/-9% звезд галактического диска (среди которых большинство составляют M-карлики) имеют рядом с собой планеты-гиганты массой больше массы Сатурна (0.3 масс Юпитера). Эта доля значительно выше, чем та, что была получена методом измерения лучевых скоростей. По всей видимости, основная причина рассогласования заключается в том, что планеты с массой порядка массы Сатурна, находящиеся на сравнительно широких орбитах, оказываются недоступны для RV-метода, но обнаруживаются методом гравитационного микролинзирования. Это означает, что большая часть планет-гигантов не мигрирует внутрь системы и остается там, где эти планеты образовались - за снеговой линией.

Метод гравитационного микролинзирования полностью подтвердил вывод, полученный транзитным методом: небольшие планеты (нептуны и суперземли) гораздо более распространены, чем планеты-гиганты. Неожиданным результатом явилось обнаружение свободно плавающих планет-гигантов, число которых оказалось в 1.8 +1.7/-0.8 раза больше числа звезд. Нет никаких сомнений, что будущие космические миссии, использующие метод гравитационного микролинзирования (например, ИК-телескоп WFIRST) принесут еще много неожиданных и волнующих открытий.

13 декабря 2013 года в Архиве электронных препринтов появилась статья, посвященная событию микролинзирования MOA-2011-BLG-262L. Оно было обнаружено обзором MOA 26 июня 2011 года на 1.8-метровом телескопе MOA-II в Новой Зеландии. К наблюдениям тут же подключились телескопы, входящие в сети PLANET и мюFUN. Время пересечения объектом-линзой радиуса Эйнштейна составило всего 3.8 суток, что говорит об очень малой массе и/или высокой угловой скорости линзы.


Кривая блеска события микролинзирования MOA-2011-BLG-262L. Нижний график показывает в увеличенном масштабе кусочек кривой блеска вблизи максимума (выделен красным прямоугольником).

Проанализировав кривую блеска фоновой звезды, усиленного гравитационным полем линзы (в максимуме ее блеск усилился почти в 80 раз!), ученые обнаружили, что событие MOA-2011-BLG-262L было вызвано двойным объектом с отношением масс, равным 4.7·10-4. Полученную кривую блеска хорошо описывают два возможных решения: сравнительно близкая свободно плавающая планета-гигант со спутником, и далекая тусклая М-звезда с планетой, свойствами напоминающей Нептун.

•  'Близкое' решение. До объекта-линзы - 640 +320/-210 пк. Линза представляет собой планету-гигант массой 3.6 +2.0/-1.7 масс Юпитера со спутником массой 0.54 +0.30/-0.19 масс Земли, разделенных расстоянием 0.13 +0.06/-0.04 а.е. (в проекции на небесную сферу).

•  'Далекое' решение. Линза представляет собой тусклый красный (или даже коричневый) карлик массой 0.12 +0.19/-0.06 солнечных масс, на расстоянии 0.84 +0.25/-0.14 а.е. от которого находится планета массой 18 +28/-10 масс Земли. В этом случае система расположена в балдже Галактики на расстоянии 7 + 1 кпк.

Полученные наблюдательные данные не позволяют сделать надежный выбор между этими двумя вариантами.

Авторы открытия подчеркивают, что метод гравитационного микролинзирования доказал свою способность находить крупные спутники у внесолнечных планет, и надеются на будущие космические миссии WFIRST и Euclid.

Интересно пофантазировать на тему планеты MOA-2011-BLG-262L b, если окажется верным 'близкое' решение. Освещенная только далеким звездным светом, остывшая почти до температуры космической пыли (т.е. до 20-30К), эта заледеневшая 'земля' будет напоминать Тритон, спутник Нептуна. Геологическая и тектоническая активность, почти неизбежная на таком сравнительно крупном теле, приведет к развитому криовулканизму и, возможно, даже к наличию неплотной атмосферы из азота и угарного газа. Под толстой ледяной корой возможен глобальный океан, извержения воды (или водно-аммиачной смеси) из недр будет периодически 'обновлять' поверхность, создавая причудливые формы рельефа.
Будущие исследования покажут, насколько вероятен этот сценарий и как часто у свободно плавающих планет-гигантов встречаются крупные спутники.

Информация получена: http://arxiv.org/pdf/1312.3951.pdf

 

16 декабря 2013
Солнце в полнеба: падающая планета Kepler-91 b
прямая ссылка на эту новость

К настоящему моменту открыто несколько десятков планет, вращающихся вокруг звезд красных гигантов, и все они расположены на достаточно широких орбитах. Но нет правил без исключений. Планета Kepler-91 b вращается вокруг своей звезды на расстоянии всего ~2.5 звездных радиусов! Как показывают расчеты, самое позднее через 55 млн. лет она упадет на свою звезду и перестанет существовать.

Kepler-91 (KOI-2133, KIC 8219268) - типичный красный гигант спектрального класса K3 III. Его масса оценивается в 1.31 + 0.1 солнечных масс, радиус достигает 6.3 + 0.16 солнечных радиусов, светимость в 16.8 + 1.7 раза превышает солнечную. Будучи на главной последовательности, Kepler-91 была звездой раннего F-класса. Расстояние до системы оценивается в 1030 +150/-130 пк, возраст составляет 4.9 + 2.1 млрд. лет.

Точнейшая фотометрия звезды Kepler-91 позволила оценить массу планеты, даже не прибегая к методу измерения лучевых скоростей. Вращаясь очень близко к звезде, планета Kepler-91 b своим тяготением приводит к небольшому искажению ее формы (этот эффект называется эффектом эллипсоидальности). Кроме того, исследователи зафиксировали регулярное изменение яркости системы за счет смены фаз планеты (эффект отражения). Измерение амплитуды обоих эффектов (121 + 33 ppm для первого и 25 + 15 ppm для второго) позволило оценить массу и альбедо планеты. Масса Kepler-91 b оказалась равной 0.88 +0.17/-0.33 масс Юпитера, радиус - 1.384 +0.011/-0.054 радиуса Юпитера, что помещает ее в класс горячих гигантов. Будущие измерения лучевой скорости звезды должны значительно уточнить этот результат. Величина альбедо, измеренная по глубине вторичного минимума (ослабления общего блеска системы в момент, когда планета проходит за звездой), оказалась равной 0.30 +0.24/-0.20.


Кривая блеска системы Kepler -91. Четко видны транзиты и плавные колебания блеска звезды, вызванные эффектом эллипсоидальности. Пунктиром показана ожидаемая кривая блеска для планеты на круговой орбите, непрерывной линией - кривая блеска в случае орбиты с эксцентриситетом 0.066.

Кроме того, кривая блеска системы указала на небольшой, однако не равный нулю эксцентриситет орбиты Kepler-91 b. Вращаясь на расстоянии 2.45 +0.15/-0.30 звездных радиусов и испытывая сильнейшее приливное воздействие со стороны своей звезды, планета, тем не менее, вращается вокруг нее не по круговой, а по слегка эллиптической орбите с эксцентриситетом 0.066 +0.013/-0.017. Причина эллиптичности орбиты пока не известна - возможно, в этой системе есть и другие (не транзитные) планеты, чье гравитационное влияние возмущает орбиту Kepler-91 b.

Еще одним необычным проявлением крайней близости планеты к звезде является неравенство площадей дневного и ночного полушарий. Поскольку угловой размер диска звезды в небе Kepler-91 b достигает 46.5њ, площадь освещенного (дневного) полушария оказывается ~70% от площади всей поверхности планеты (в отличии от 50% для планет, достаточно удаленных от своих звезд).

Схема, иллюстрирующая условия освещенности на планете Kepler-91 b во время транзита. Красными линиями показаны границы освещенности, создаваемые падающими световыми лучами. Видно, что площадь ночного (не освещенного) полушария не превышает 30% от полной площади поверхности.

Планета Kepler-91 b находится на заключительном этапе своей эволюции. Самое позднее через 55 млн. лет распухающая оболочка эволюционирующей звезды 'дотянется' до перицентра орбиты этого горячего гиганта. Вполне возможно, что еще раньше планета начнет быстро терять вещество, переполнив свою полость Роша.

Информация получена: http://arxiv.org/pdf/1312.3943v1.pdf

 

12 декабря 2013
Три транзитных горячих гиганта у проэволюционировавших звезд: WASP-68 b, WASP-73 b и WASP-88 b
прямая ссылка на эту новость

Изучение транзитных планет (т.е. планет, проходящих по диску своих звезд) спектральными методами позволяет получить уникальную информацию об их массе, средней плотности, альбедо, составе атмосферы и прочих важных характеристиках. К настоящему моменту известно около 400 транзитных экзопланет, и их число продолжает быстро расти. В отличие от поиска небольших планет, поиск транзитных планет-гигантов не требует вывода телескопов в космос, многометровой апертуры наземных телескопов или спектрографов уникальной точности - для него достаточно скромных средств. Так, самый успешный наземный обзор SuperWASP основан на работе двух комплексов из 8 автоматических телескопов, каждый с апертурой всего 20 см и разрешением 13.7