Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2008/11/mysterious-source-of-high-energy-cosmic-radiation-discovered
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 09:22:17 2016
Êîäèðîâêà: ISO8859-5

Ïîèñêîâûå ñëîâà: unidentified sources
Mysterious <b style="color:black;background-color:#66ffff">source</b> of high-energy cosmic radiation discovered | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

Mysterious source of high-energy cosmic radiation discovered

The finding was made with a balloon-borne instrument over Antartica.
Provided by NASA Headquarters, Washington, D.C.
Cosmic rays from the Big Dipper
During 10 years, five high-energy cosmic rays (plotted as orange asterisks) came from one small part of the sky near the star Merak in the Big Dipper. Astrophysicists suspect their source is a merging pair of galaxy clusters (blue). Progressively more distant galaxy clusters appear in light blue, green, and red, while the gray shading shows the positional error for each of the five cosmic-ray detections.
G. R. Farrar/A. A. Berlind/D. W. Hogg (New York University)
November 19, 2008
Scientists have discovered a previously unidentified nearby source of high-energy cosmic rays. The finding was made with a NASA-funded balloon-borne instrument floating high over Antarctica.

Researchers from the Advanced Thin Ionization Calorimeter (ATIC) collaboration, led by scientists at Louisiana State University at Baton Rouge, published the results in the November 20 issue of the journal Nature. The new results show an unexpected surplus of cosmic ray electrons at very high energy &#8212 300-800 billion electron volts &#8212 that must come from a previously unidentified source or from the annihilation of exotic theoretical particles used to explain dark matter.

"This electron excess cannot be explained by the standard model of cosmic ray origin," said John P. Wefel, ATIC project principal investigator and a professor at Louisiana State. "There must be another source relatively near us that is producing these additional particles."

According to the research, this source would need to be within about 3,000 light-years of the Sun. It could be an exotic object such as a pulsar, mini-quasar, supernova remnant, or an intermediate-mass black hole.

"Cosmic-ray electrons lose energy during their journey through the galaxy," said Jim Adams, ATIC research lead at NASA's Marshall Space Flight Center in Huntsville, Alabama. "These losses increase with the energy of the electrons. At the energies measured by our instrument, these energy losses suppress the flow of particles from distant sources, which helps nearby sources stand out."

The scientists point out, however, that there are few such objects close to our solar system.

"These results may be the first indication of a very interesting object near our solar system waiting to be studied by other instruments," Wefel said.

An alternative explanation is that the high-energy electron surplus might result from the annihilation of very exotic particles put forward to explain dark matter. In recent decades, scientists have learned that the kind of material making up the universe around us only accounts for about five percent of its mass composition. Close to 70 percent of the universe is composed of dark energy (so called because its nature is unknown). The remaining 25 percent of the mass acts gravitationally just like regular matter, but does little else, so it is normally not visible.

The nature of dark matter is not understood, but several theories that describe how gravity works at very small, quantum distances predict exotic particles that could be good dark matter candidates.

"The annihilation of these exotic particles with each other would produce normal particles such as electrons, positrons, protons, and antiprotons that can be observed by scientists," said Eun-Suk Seo, ATIC lead at the University of Maryland at College Park.

The 4,300-pound ATIC experiment was designed to be carried to an altitude of about 23.4 miles (37.6 kilometers) above Antarctica using a helium-filled balloon about as large as the interior of the New Orleans Superdome. The goal was to study cosmic rays that otherwise would be absorbed into the atmosphere.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook