Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2013/01/galaxys-gamma-ray-flares-erupted-far-from-its-black-hole
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 08:52:59 2016
Êîäèðîâêà: ISO8859-5
Galaxy's gamma-ray flares erupted far from its black hole | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

Galaxy's gamma-ray flares erupted far from its black hole

Using a combination of data, astronomers have zeroed in on the source of an ancient outburst.
RELATED TOPICS: GAMMA-RAY BURSTS | GALAXIES | VLBA
Blazar4C7107
Prior to its strong outbursts in 2011, blazar 4C +71.07 was a weak source for Fermiò??s LAT. These images centered on 4C +71.07 show the rate at which the LAT detected gamma rays with energies above 100 million electron volts; lighter colors equal higher rates. The image at left covers 2.5 years, from the start of Fermiò??s mission to 2011. The image at right shows 10 weeks of activity in late 2011 when 4C +71.07 produced its strongest outburst. A more frequently active blazar, S5 0716+71, appears in both images. // Credit: NASA/DOE/Fermi LAT Collaboration
In 2011, a months-long blast of energy launched by an enormous black hole almost 11 billion years ago swept past Earth. Using a combination of data from NASAò??s Fermi Gamma-ray Space Telescope and the National Science Foundationò??s Very Long Baseline Array (VLBA), the worldò??s largest radio telescope, astronomers have zeroed in on the source of this ancient outburst.

Theorists expect gamma-ray outbursts to occur only in close proximity to a galaxyò??s central black hole, the powerhouse ultimately responsible for the activity. A few rare observations suggested this is not the case.

The 2011 flares from a galaxy known as 4C +71.07 now give astronomers the clearest and most distant evidence that the theory still needs some work. The gamma-ray emission originated about 70 light-years away from the galaxyò??s central black hole.

The 4C +71.07 galaxy was discovered as a source of strong radio emission in the 1960s. NASAò??s Compton Gamma-Ray Observatory, which operated in the 1990s, detected high-energy flares, but the galaxy was quiet during Fermiò??s first two and a half years in orbit.

In early November 2011, at the height of the outburst, the galaxy was more than 10,000 times brighter than the combined luminosity of all of the stars in the Milky Way Galaxy.

ò??This renewed activity came after a long slumber, and thatò??s important because it allows us to explicitly link the gamma-ray flares to the rising emission observed by radio telescopes,ò?? said David Thompson from NASAò??s Goddard Space Flight Center in Greenbelt, Maryland.

Located in the constellation Ursa Major, 4C +71.07 is so far away that its light takes 10.6 billion years to reach Earth. Astronomers are seeing this galaxy as it existed when the universe was less than one-fourth of its present age.

At the galaxyò??s core lies a supersized black hole weighing 2.6 billion times the Sunò??s mass. Some of the matter falling toward the black hole becomes accelerated outward at almost the speed of light, creating dual particle jets blasting in opposite directions. One jet happens to point almost directly toward Earth. This characteristic makes 4C +71.07 a blazar, a classification that includes some of the brightest gamma-ray sources in the sky.

Astronomers Alan Marscher and Svetlana Jorstad from Boston University routinely monitor 4C +71.07 along with dozens of other blazars using several facilities, including the VLBA.

The instrumentò??s 10 radio telescopes span North America, from Hawaii to St. Croix in the U.S. Virgin Islands, and possess the resolving power of a single radio dish more than 5,300 miles (8,500 kilometers) across when their signals are combined. As a result, the VLBA resolves detail about a million times smaller than Fermiò??s Large Area Telescope (LAT) and 1,000 times smaller than NASAò??s Hubble Space Telescope.

In autumn 2011, the VLBA images revealed a bright knot that appeared to move outward at a speed 20 times faster than light.

ò??Although this apparent speed was an illusion caused by actual motion almost directly toward us at 99.87 percent the speed of light, this knot was the key to determining the location where the gamma rays were produced in the black holeò??s jet,ò?? said Marscher.

The knot passed through a bright stationary feature of the jet, which the astronomers refer to as its radio ò??core,ò?? on April 9, 2011. This occurred within days of Fermiò??s detection of renewed gamma-ray flaring in the blazar. Marscher and Jorstad noted that the blazar brightened at visible wavelengths in step with the higher-energy emission.

During the most intense period of flaring, from October 2011 to January 2012, the scientists found that the polarization direction of the blazarò??s visible light rotated in the same manner as radio emissions from the knot. They concluded the knot was responsible for the visible and the gamma-ray light, which varied in sync.

This association allowed the researchers to pinpoint the location of the gamma-ray outburst to about 70 light-years from the black hole.

The astronomers think that the gamma rays were produced when electrons moving near the speed of light within the jet collided with visible and infrared light originating outside the jet. Such a collision can kick the light up to much higher energies, a process known as inverse-Compton scattering.

The source of the lower-energy light is unclear at the moment. The researchers speculate the source may be a slow-moving outer sheath that surrounds the jet. Nicholas MacDonald from Boston University is investigating how the gamma-ray brightness should change in this scenario to compare with observations.

ò??The VLBA is the only instrument that can bring us images from so near the edge of a young supermassive black hole, and Fermiò??s LAT is the only instrument that can see the highest-energy light from the galaxyò??s jet,ò?? said Jorstad.

0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook