Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.arcetri.astro.it/~ranfagni/CD/CD_TESTI/P_NAVE.HTM
Дата изменения: Fri Jul 28 13:59:36 2000
Дата индексирования: Sun Sep 12 16:49:52 2010
Кодировка:

Поисковые слова: http www.badastronomy.com bad tv foxapollo.html
Il Punto nave, ovvero come fanno i marinai

Il Punto nave, ovvero come fanno i marinai

Come trovare la propria posizione in qualsiasi momento


Il viaggiatore desidera conoscere la propria posizione in un qualsiasi momento del giorno o della notte in modo da correggere la rotta e non allungare inutilmente i tempi del suo viaggio. Basarsi quindi su gli astri che si trovano in meridiano per ricavare la latitudine e la longitudine non è un metodo molto efficiente, anche perchè ci potrebbe essere una nuvola, in quella direzione, al momento della misura. Il problema deve potersi risolvere in qualsiasi momento, con qualsiasi astro, in qualunque direzione si trovi. La soluzione del problema è alla base del successo commerciale delle traversate oceaniche del secolo scorso.

A causa della sfericità della Terra e dei suoi movimenti, le coordinate alto-azimutali di un astro (stelle, Sole, Luna, pianeti), dipendono da:

Quindi, se conosciamo: da questi dati è possibile ricavare le coordinate geografiche del luogo, qualunque sia l'astro e qualunque sia la sua posizione rispetto all'orizzonte ed al meridiano di chi lo osserva. L`Astronomia sferica ci fornisce le formule ed i metodi per risolvere questo problema.
Praticamente, chi viaggia preferisce non utilizzare misure di azimut in mare, perchè lo impediscono i movimenti di rollio e beccheggio della nave, ed in terra, in quanto generalmente, non si conosce la direzione Nord-Sud, perchè non è immediato ricavarla durante il viaggio. Si preferisce allora misurare la sola altezza di più astri ed il tempo corrispondente, riferito al meridiano terrestre di longitudine zero. La misura di altezza risulta facile e precisa, anche in mare, mediante un ingegnoso strumento, il sestante. La scelta di basare il calcolo della latitudine e longitudine su sole misure di altezza e di tempo determina il particolare metodo cosiddetto dei cerchi di altezza che, assieme al sestante ed al cronometro marino, è il simbolo stesso della navigazione astronomica degli ultimi due secoli.

Un sestante moderno

Esistono infiniti punti della Terra dai quali, ad un certo istante, gli osservatori misurano una data altezza dello stesso astro; questi punti sono disposti lungo un cerchio, il cui centro si trova nel luogo che, in quell'istante, ha l'astro allo zenit, e che prende perciò il nome di punto substellare.

Lo si capisce facilmente pensando ad un oggetto terrestre come la punta di un campanile: tutti coloro che misurano la stessa altezza angolare si trovano alla stessa distanza lineare dalla base del campanile e quindi lungo un cerchio. Coloro che misurano un'altezza angolare minore si trovano su un cerchio concentrico con raggio maggiore e, viceversa, minore se misurano un'altezza angolare maggiore. Coloro che misurano un angolo retto si trovano alla base del campanile.

Tutto ciò resta valido anche con le stelle, soltanto che, diversamente che con il campanile, le misure devono essere riferite ad un preciso istante, cioè ad una precisa posizione della Terra rispetto alle stelle, a causa dell'apparente moto di rotazione del cielo.
Il raggio del cerchio è pari al complemento dell'altezza misurata. Questa grandezza viene indicata distanza zenitale. Il cerchio, così definito, prende il nome di cerchio di altezza.
Con due astri si hanno due cerchi di altezza e l'osservatore DEVE trovarsi in uno dei due punti d'incontro dei due cerchi. Resta quindi un certo margine di ambiguità anche se, normalmente, i due punti cadono molto distanti l'uno dall'altro ed il navigante può facilmente escluderne uno. Se consideriamo tre astri ed i corrispondenti cerchi di altezza, l'osservatore DEVE trovarsi nell'unico punto d'incontro di questi tre cerchi ed il problema è ora perfettamente determinato.

Come trovare le coordinate geografiche di questo punto? Oggi lo possiamo fare con il calcolo, utilizzando una semplice calcolatrice programmabile che, in pochi secondi, risolve il sistema di equazioni che rappresentano la sfera terrestre ed i piani che la intersecano lungo i cerchi di altezza. Questo metodo, senza l'ausilio delle moderne calcolatrici, non era proponibile (e non lo è nemmeno adesso) a bordo di una nave: troppo lungo e complesso. Prima di ottenere il risultato la nave ha tutto il tempo di infrangersi su una scogliera o di arenarsi su un basso fondale !!
L'altra soluzione è il metodo grafico, consistente nel disegnare i cerchi di altezza su una rappresentazione cartografica della Terra. Purtroppo i cerchi rimangono tali solo e soltanto su un mappamondo che, per garantire la precisione desiderata, dovrebbe essere grande quanto la nave !! In qualunque altra proiezione cartografica i cerchi diventano curve, molto difficili da disegnare.
Ma, qualunque sia la proiezione usata, in una carta che, per essere accurata, rappresenta sempre una superficie limitata, si possono disegnare solo piccolissime porzioni dei cerchi di altezza e non è possibile avere insieme i cerchi ed i loro centri, cioè i punti substellari. Inoltre poichè un piccolo arco di un grande cerchio si confonde con la sua corda, i cerchi compaionio nelle carte come segmenti rettilinei detti rette di altezza.

A causa degli inevitabili errori di misura, dovuti principalmente alla misura dell'altezza, poichè l'orologio è ormai più preciso del sestante, le rette di altezza non si incontrano mai in un punto, come assicura la teoria. Esse delimitano sulla carta un'area dentro la quale viene sicuramente a trovarsi la nave. Tanto maggiore è l'accuratezza della misura, tanto più piccola l'area di incertezza. Con questo metodo, con un pò di esperienza, un buon orologio ed un buon sestante, si può determinare la posizione della nave con lo scarto di non più di due chiliometri.
Calcolo e disegno delle rette di altezza viene insegnato nei corsi annuali di navigazione astronomica delle accademie navali e degli istituti nautici; non c'è qui lo spazio per entrare nei dettagli, possiamo però chiarire gli aspetti astronomici del calcolo dei cerchi di altezza, accontentandoci di disegnarli direttamente su un mappamondo nell'ambito di un'
esperienza didattica.

Se al posto delle stelle avessimo in cielo oggetti artificiali, sempre visibili anche con le nuvole, il metodo risulterebbe sempre valido e, senzaltro, più vantaggioso. Attualmente viene usata una rete di satelliti artificiali in orbita attorno alla Terra in numero tale che, da ogni luogo, ne sono visibili almeno quattro, sufficienti per calcolare, senza alcuna ambiguità, le coordinate geografiche.

Poichè di ogni satellite si conosce la posizione nello spazio e se ne misura la distanza, l'osservatore si trova alla superficie di un'enorme sfera centrata sul satellite ed avente come raggio quella distanza. La sua posizione sulla Terra risuterà dall'intersezione della sfera terrestre e da quelle di almeno tre di questi satelliti. Due sfere si intersecano lungo un cerchio, tre sfere si intersecano in due punti e quattro sfere possono avere in comune uno ed un sol punto. Come nel caso dei cerchi di altezza, nel caso di tre sfere possiamo ugualmente ottenere la posizione se siamo in grado di escludere uno dei due punti d'incontro, perchè irragionevolmente lontano dalla nostra posizione presunta o perchè cade dentro la Terra o al di fuori di essa. Se usiamo quattro satelliti possiamo ottenere la posizione dell'osservatore senza alcuna ambiguità, anche se si trova nello spazio.
Poichè la strumentazione attuale fornisce la distanza con grande rapidità, la variazione della distanza nel tempo permette di conoscere la direzione e la velocità con cui si muove l'osservatore sulla Terra o nello spazio.

[indietro] [indice]