Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.atnf.csiro.au/iau-comm31/pdf/2009_IAUGA_JD6/JD6-FArias.pdf
Äàòà èçìåíåíèÿ: Fri Aug 6 03:06:41 2010
Äàòà èíäåêñèðîâàíèÿ: Mon Feb 4 04:22:03 2013
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: http www.badastronomy.com phpbb index.php
Bureau International des Poids et Mesures

IMPACT OF NEW FREQUENCY STANDARDS ON THE INTERNATIONAL TIME SCALES E. F. Arias, G. Panfilo

JD 6 ­ Commission 31 XXVII IAU General Assembly Rio de Janeiro (Brazil), 7 August 2009
Bureau International des Poids et Mesures 1


Elements of a time scale Minimum requisite: 1 clock

Reliable Stable and accurate in frequency Accessible Algorithm

Bureau International des Poids et Mesures

2


Atomic standards performances

· Secondary standards Stability Cs standard (st. tube) Cs standard (high perf.) H- maser (active) 5 x 10 1 x 10
-14

Accuracy 1 x 10 5 x 10
-12

@ 5 days

-14

-13

@ 5 days

< 2 x 10
@ 1 day

-16

· Primary standards

fe w 1 0

- 16

Bureau International des Poids et Mesures

3


Principles of calculation of UTC/TAI with the algorithm ALGOS

Time and frequency differences Clock data d a ta EAL + PFS data
·Optimized frequency stability ·Accurate in frequency Frequency corrections

Time transfer
·Optimized frequency stability ·No constrained to be accurate in frequency

TAI

+

(-n x s)

UTC

Bureau International des Poids et Mesures

4


H-maser
400

5071A

Other clocks

350

300

250

N

200

150

100

50

0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year
Bureau International des Poids et Mesures 5


EA L
Weighting algorithm Prediction algorithm

EAL(t ) =

w [h (t )
i =1 i i

N

+ hi(t

)]

· · · ·

N is the number of atomic clocks wi the relative weight of the clock Hi. hi(t) is the reading of clock Hi at time t hi'(t) is the prediction of the reading of clock Hi
N

The weights of the clocks obey the relation: wmax= 2.5/N


i =1

wi = 1

Bureau International des Poids et Mesures

6


Prediction Algorithm
t
i -1

t 30 days

t
i

i +1

30 days

In two different intervals the clock ensemble can change

EAL(ti-ti-1)

EAL(ti+1-ti)

The consequences:

EAL

t

i -1

t

i

t

EAL
t

i +1

i -1

t

t
i

i +1

Time step

Frequency step

Bureau International des Poids et Mesures

7


Prediction Algorithm on EAL
The prediction term hi'(t) for clock Hi is the sum of two terms:
Term to avoid time steps
'

Term to avoid frequency steps

hi (t ) = ai , I i + Bi
t
i -1

p,I

i

(t
Ii

-t
t

i

)

Ii

-1

t

i

i +1

EAL-Hi (ti-ti-1)

EAL-Hi (ti+1-ti)

· ai , I is the time correction relative to EAL of clock Hi at date ti
i

· Bi

p,I

i

is the frequency of clock Hi, relative to EAL, predicted for the period [ti, t]

Linear model: the frequency is considered constant during the month
Bureau International des Poids et Mesures 8


Prediction Analysis ­ Cesium Clock
3-year test period (2006-2008)
30 20 Na no s e c on ds 10 0 -10 -20 -30 0

The difference (prediction-reality) of the EAL-CS Clock with standard deviation (red lines).

5

10

15 Days

20

25

30

Considering 100 Cesium Clocks
The mean value of the difference (prediction-reality) for 100 EAL-CS Clock at 30 days is about 0.2 ns and the standard deviation is about 21 ns
Bureau International des Poids et Mesures 9


Prediction Analysis ­ H-maser
3-year test period (2006-2008)
5 0

Nanoseconds

The difference (prediction-reality) of the EAL- H Maser

-5 -10 -15 -20 -25

0

5

10

15

20

25

30

Considering 20 H-masers The mean value of the difference (prediction-reality) after 30 days is about -30 ns and the standard deviation at 30 days is about 40 ns
Bureau International des Poids et Mesures

Day s

As expected, linear model does not take care of the H-maser frequency drift
10


EAL compared to TT(BIPM)
EAL shows a frequency drift w.r.t. TT
f(EAL)-f(TT(BIPM08))
73

72

4 â 10

-16

/ month

71

70
-14

10 69

68

67

66 1999

2000

2001

2002

2003

2004 Year

2005

2006

2007

2008

2009

Bureau International des Poids et Mesures

11


EAL-TT
To show the influence of H-masers on EAL drift we consider TT as an independent reference:
6.85 x 10
-13

Normalized frequency

f(EAL
6.8

without Hmaser

)-f(TT)

f(EAL)-f(TT)

6.75

About 40% of EAL frequency drift is due to the H-masers
53600 53800 54000 MJD 54200 54400 54600 54800

6.7 53400

Frequency drift on f(EAL)-f(TT) is: Frequency drift on f(EAL
without Hmaser

4x10-16/ month
)-f(TT) is: 2.4x10
-16

/ month
12

Bureau International des Poids et Mesures


New prediction algorithm for the H-masers
The obtained relation for the prediction algorithm:

hi (t ) = ai , I i + Bi
'

p,I

i

1 (t - ti ) + Ci 2

p,I

i -1

1 (ti - ti -1 )(t - ti ) + Ci 2

p,I

i

(t

-t

i

)2

Now the frequency is not constant on the interval!
· ai · is the time correction relative to EAL of clock Hi at date t
i

,I

i

i

Bi

p,I

is the frequency of clock Hi, relative to EAL, predicted for the period [ti, t] is the frequency drift of the clock Hi, relative to EAL, predicted for the period [ti, t] is the frequency drift of the clock Hi, relative to EAL, predicted for the period [ti-1, ti]
13

· Cip ·C

,I

i

ip , I

i -1

Bureau International des Poids et Mesures


Effect of the new prediction algorithm
The difference (prediction-reality) of the EAL- H maser using two different prediction techniques
5 0
15 10

Nanoseconds

-5 -10 -15 -20 -25

Nanoseconds

5 0 -5 -10 -15 -20 0 5 10 15 20 25 30

0

5

10

15

20

25

30

Day s
Linear Prediction

Day s

Quadratic prediction

Considering 20 (EAL-H-masers)

The mean value of the difference (prediction-reality) after 30 days is about 2 ns and the standard deviation at 30 days is about 45 ns
Bureau International des Poids et Mesures 14


Effect of the new prediction algorithm
To show the influence of new prediction algorithm on EAL drift we use TT as independent frequency reference:
6.9 x 10
-13

Normalized frequency

6.85

f(EAL

new predition algorithm

)-f(TT)

6.8

f(EAL)-f(TT)

6.75

6.7

6.65 5.36

5.38

5.4

5.42

5.44

5.46

5.48

5.5 x 10
4

MJD

About 20% of EAL frequency drift is due to the linear prediction used in ALGOS 4x10-16/ month
)-f(TT) is: 3.2x10
-16

Frequency drift on f(EAL)-f(TT) is: Frequency drift on f(EAL

new prediction algorithm

/ month
15

Bureau International des Poids et Mesures


2
0

1.5
-50

EAL'-EA L

Percentage difference

1

-100 -150 -200 -250 -300 -350 -400

0

-0.5

-1

-1.5 0

5

10

15

20

25

30

35

40

N a n o seco n d s

0.5

Number of the months

53800 53900 54000 54100 54200 54300 54400 54500 54600 54700 54800

MJD

Difference of total weight of H-masers when a linear and a quadratic prediction is used. Weights increase. The drift of EAL increases when the prediction model is quadratic. Four months used for estimating the drift. ·Revise the weighting strategy ·Re-considering the use of clocks in the scale formation (caesiumbased scale for long-term stability + H-masers for improving short term stability)
16

Bureau International des Poids et Mesures


Primary standards in TAI
Primary Standard IT-CSF1 NICT-CSF1 NIST-F1 NMIJ-F1 PTB-CS1 PTB-CS2 PTB-CSF1 SYRTE-FO1 SYRTE-FO2 SYRTE-FOM SYRTE-JPO Type /selection Fountain Fountain Fountain Fountain Beam /Mag. Beam /Mag. Fountain Fountain Fountain Fountain Beam /Opt. Type B std. Uncertainty (0.5 to 0.7)x10 (0.8 to 1.5)x10 0.3x10 3.9x10 8x10
-15 -15 -15 -15

Operation

Comparison with H maser UTC(NICT) H maser H maser TAI TAI H maser H maser H maser H maser H maser

Number/typical duration of comp. 6 / 10 to 20 d 2 / 10-15 d 5 / 15 to 25 d 7 / 15 to 25 d 10 / 30 d 12 / 30 d 2 / 25 d 8 / 10 to 30 d 9 / 10 to 30 d 6 / 10 to 30 d 12 / 10 to 30 d

Discontinuous Discontinuous Discontinuous Discontinuous Continuous Continuous Discontinuous

-15

12x10

-15

0.9x10

-15 -15

(0.4 to 0.6)x10 (0.4 to 0.6)x10 (0.7 to 0.9)x10 6.3x10
-15

Discontinuous Discontinuous Discontinuous Discontinuous

-15

-15

Bureau International des Poids et Mesures

17


f(EAL) respect to PFS
f(EAL)-f(PFS) 72.0

71.4

70.8

NIST-F1 PTBCSF1

70.2
FO2 FOM IT-CSF1
- 14

69.6

69.0

NPLCSF1 NMIJ-F1

10

68.4

FO1 NICT-Cs F1

67.8

67.2

66.6

66.0 1999

2000

2001

2002

2003

2004 Years

2005

2006

2007

2008

2009

2010

By using the PFS we evaluate the systematic variation of EAL
Bureau International des Poids et Mesures 18


Uncertainty of Optical Clocks
Optical transitions · have five orders of magnitude higher frequency ; Q = / · allow for higher frequency stability · can be measured with arbitrary acctucacy tanfdarombs Op i r al s by s c ds · allow for higher accuracy as compared to microwave transitions

Primary Cs clocks

F. Rihele, Report to CCLCCTF WG, June 2009

In the future a new definition for the second will be required.
Bureau International des Poids et Mesures 19


Bureau International des Poids et Mesures

20


Conclusions
The effect of the linear prediction algorithm has been studied · on the Cesium clock · on the H-masers it works well it does not work well

The impact of the H-masers on EAL frequency drift has been analyzed. A new mathematical expression for the prediction has been found. It includes the treatment of H-maser frequency drift. More work is needed to adapt the algorithm to the proposed frequency prediction. PFS number and accuracy has increased; the accuracy of TAI is approaching 10-16. The challenge is to be able to compare the optical frequency standards at the level of their performances.
Bureau International des Poids et Mesures 21


Bureau International des Poids et Mesures

22