Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.atnf.csiro.au/pasa/17_1/gaensler/paper/refs.html
Äàòà èçìåíåíèÿ: Fri Apr 8 08:56:00 2016
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 16:46:02 2016
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: http astrokuban.info astrokuban
References

Long-term Monitoring of Molonglo Calibrators

B. M. Gaensler , R. W. Hunstead ,, PASA, 17 (1), 72.

Title/Abstract Page: Long-term Monitoring of Molonglo
Previous Section: Acknowledgements
Contents Page: Volume 17, Number 1

References

Bertsch, D.L. et al 1993 ApJ 405, 21

Brinkmann, W., Siebert, J., & Boller, T. 1994 A&A 281, 355

Burgess, A.M. 1998 PhD thesis, University of Sydney

Campbell-Wilson, D., & Hunstead, R.W. 1994 PASA 11, 33 (Paper I)

Cawthorne, T.V., & Rickett, B.J. 1985 Nature 315, 40

di Serego Alighieri, S., Danziger, I.J., Morganti, R., & Tadhunter, C.N. 1994 MNRAS 269, 998

Ghosh, T., & Rao, A.P. 1992 A&A 264, 203

Gregorini, L., Ficarra, A., & Padrielli, L. 1986 A&A 168, 25

Hughes, P.A., Aller, H.D., & Aller, M.F. 1992 ApJ 396, 469

Hunstead, R.W. 1972 Astrophys. Lett. 12, 193

Hunstead, R.W. 1991 Aust J Phys 44, 743

Hunstead, R.W. & Murdoch, H.S. 1980 MNRAS 192, 31P

Kaspi, V.M., & Stinebring, D.R. 1992 ApJ, 392, 530

Kedziora-Chudczer, L., Jauncey, D.L., Wieringa, M.H., Walker, M.A., Nicolson, G.D., Reynolds, J.E., & Tzioumis, A.K. 1997 ApJ, 490, L9

Kesteven, M.J.L., Bridle, A.H., & Brandie, G.W. 1976 AJ 81, 919

King, E.A. et al 1993, in `Sub-arcsecond Radio Astronomy', ed. R.J. Davis & R.S. Booth, Cambridge: CUP, 152

Large, M.I., Mills, B.Y., Little, A.G., Crawford, D.F., & Sutton, J.M. 1981 MNRAS 194, 6934

Large, M.I., Campbell-Wilson, D., Cram, L.E., Davison, R.G., & Robertson, J.G. 1994 PASA 11, 44

Ma, C. et al 1998 AJ 116, 516

Mills, B.Y. 1981 PASA 4, 156

Mitchell, K.J., Dennison, B., Condon, J.J., Altschuler, D.R. Payne, H.E., O'Dell, S.L., & Broderick, J.J. 1994 ApJS 93, 441

Murphy, D.W. et al 1993, in `Sub-arcsecond Radio Astronomy', ed. R.J. Davis & R.S. Booth, Cambridge: CUP, 243

Orr, M.J.L., & Browne, I.W.A. 1982 MNRAS 200, 1067

Preston, R.A. et al 1989 AJ 98, 1

Qian, S.J., Britzen, S., Witzel, A., Krichbaum, T.P., Wegner, R., & Waltman, E. 1995 A&A 295, 47

Rickett, B.J., Coles, W.A., & Bourgois, G. 1984 A&A 134, 390

Robertson, J.G. 1991 Aust. J. Phys. 44, 729

Shapirovskaya, N.Y. 1978 Sov. Astron. 22, 544

Spangler, S., Fanti, R., Gregorini, L., & Padrielli, L. 1989 A&A 209, 315

Tingay, S.J. et al 1996 ApJ 464, 170

Tingay, S.J. et al 1997 AJ 113, 2025

Tzioumis, A.K. 1987 PhD thesis, University of Sydney

Figure 1: The relative gain of the MOST as a function of meridian distance. The data shown correspond to the asymmetric gain curve of Burgess (priv comm), with additional empirical corrections of order 2%.
\begin{figure} \centerline{\psfig{file=md_curve.ps,width=12cm,angle=270}}\end{figure}

Figure 2: Light curves for 55 MOST calibrators. Sources are marked S, U or V, corresponding to whether their time behaviour is steady, undetermined or variable respectively. Each abcissa ranges between MJD - 40000 =á 5500 (1983 Jun) and 10400 (1996 Nov), while ordinates run between 0.5 and 1.5 times the nominal flux density for each source (see Tableá 1 of Paperá I). Data have been binned into 30 day intervals -- the error bars shown are the 1$\sigma $ standard deviation of the individual data points within each interval, or are set at 5% in cases where only one data point falls in a given 30 day period.
\begin{figure} \centerline{\psfig{file=sources_1.ps,width=16cm,angle=270}}\end{figure}

Figure 3: Light curves (cont.)
\begin{figure} \centerline{\psfig{file=sources_2.ps,width=14cm,angle=270}}\end{figure}

Figure 4: Light curves (cont.)
\begin{figure} \centerline{\psfig{file=sources_3.ps,width=14cm,angle=270}}\end{figure}

Figure 5: Light curves (cont.)
\begin{figure} \centerline{\psfig{file=sources_4.ps,width=14cm,angle=270}}\end{figure}

Figure 6: Structure functions for the 18 variable sources. The dashed horizontal line corresponds to

$\Sigma _\tau = 2$, the value at which a pure sinusoid will saturate. The dashed vertical line corresponds to the approximate lag at which the structure function saturates (the time scale for variability, $\tau _V$, is defined to be twice this value).

\begin{figure} \centerline{\psfig{file=struc_1.ps,width=14cm,angle=270}}\end{figure}

Figure 7: Structure functions (cont.)
\begin{figure} \centerline{\psfig{file=struc_2.ps,width=14cm,angle=270}}\end{figure}

Figure 8: The fraction of variable sources as a function of Galactic latitude. Horizontal error bars represent the width of each latitude bin, while vertical error bars have been derived by computing the fraction of variable sources which results when half the undetermined sources in that bin are reclassified as either variable (upper limits) or steady (lower limits).
\begin{figure} \centerline{\psfig{file=lat_hist.ps,height=8cm,angle=270}}\end{figure}

Figure 9: Plot of modulation index (m) versus spectral index ($\alpha $) for all 55 MOST calibrator sources. Note the tendency for m to increase as the spectrum flattens.
\begin{figure} \centerline{\psfig{file=m_alpha.ps,width=14cm,angle=270}}\end{figure}


Table 1: Properties of variable sources in our sample.
Source b $\tau _V$ ma Identb z $\alpha^c$ LASd
á  (deg) (days) á  á  á  á  ('')
á  á  á  á  á  á  á  á 
MRCá B0208-512 -61.8 2000 0.047 Q 1.003 -0.23 6.0
MRCá B0537-441 -31.1 1500 0.139 Q 0.894 +0.25 ...
MRCá B0943-761 -17.4 300 0.023 g ... -0.79 2.8
MRCá B1151-348 +26.3 400 0.019 Q 0.258 -0.49 <2.9
MRCá B1215-457 +16.5 300 0.019 Q 0.529 -0.59 <1.9
MRCá B1234-504 +12.0 1200 0.060 Q? $\ldots$ -0.82 <1
MRCá B1424-418 +17.3 300 0.074 Q 1.52 -0.47 <2.3
MRCá B1458-391 +17.0 400 0.022 g $\ldots$ -0.67 <2.4
MRCá B1549-790 -19.5 700 0.050 g 0.15 -0.29 <1.0
MRCá B1610-771 -18.9 400 0.052 Q 1.71 -0.13 <1
MRCá B1718-649 -15.8 1400 0.060 g 0.013 +0.21 ...
MRCá B1740-517 -11.5 2500 0.063 g $\ldots$ -0.08 <1
MRCá B1827-360 -11.8 400 0.016 g $\ldots$ -1.12 <1.5
MRCá B1829-718 -24.5 400 0.048 g $\ldots$ -0.35 ...
MRCá B1854-663 -25.5 400 0.022 g ... -0.86 <1.0
MRCá B1921-293 -19.6 3000 0.191 Q 0.352 +0.38 ...
MRCá B2052-474 -40.4 300 0.084 Q 1.489 -0.34 3.9
MRCá B2326-477 -64.1 400 0.037 Q 1.489 -0.15 ...
á  á  á  á  á  á  á  á 

a Modulation index, defined by

$m=\sigma/\bar{S}$b Q = quasar ; g = galaxy c Spectral index $\alpha $ (where

$S \propto \nu^{\alpha}$) between 408 and 2700 MHz (or 4850 MHz if 2700 MHz flux density not available) d Largest angular size at 5 GHz, measured with the Australia Telescope Compact Array (Burgess 1998)



Title/Abstract Page: Long-term Monitoring of Molonglo
Previous Section: Acknowledgements
Contents Page: Volume 17, Number 1

Welcome... About Electronic PASA... Instructions to Authors
ASA Home Page... CSIRO Publishing PASA
Browse Articles HOME Search Articles
á© Copyright Astronomical Society of Australia 1997
ASKAP
Public