Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/pdc/2007/xtra/Oblezin/Oblezin_Publication_List.pdf
Дата изменения: Wed Oct 24 17:36:30 2007
Дата индексирования: Sun Apr 10 20:37:45 2016
Кодировка:
Publication List

1. A. Gerasimov, D. Lebedev, S. Oblezin, Baxter operator and Archimedean Hecke algebra, Preprint [math.RT/0706.3476], 2007, 32 pages. 2. A. Gerasimov, D. Lebedev, S. Oblezin, New integral representations of Whittaker functions for classical groups, Preprint [math.RT/0705.2886], 2007, 100 pages. 3. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of quantum groups and its applications, to appear in Transl. of AMS, 2007, 20 pages. 4. A. Gerasimov, D. Lebedev, S. Oblezin, Baxter Q-operator and Givental integral representation for Cn and Dn , Preprint [math.RT/0609082], 2006, 15 pages. 5. A. Gerasimov, D. Lebedev, S. Oblezin, Givental integral representation for classical groups, Preprint [math.RT/0608152], 2006, 22 pages. 6. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices, (2006), Aricle ID96489, 23 pages. 7. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of quantum groups, Contemp. Math. 391, (2005), 101-121. 8. S. Oblezin, Isomonodromic deformations of sl(2) Fuchsian systems on the Riemann sphere, Moscow Math. J. 5:2, (2005), 111-138. 9. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of the Yangian and moduli space of monopoles, Commun. Math. Phys. 260, (2005), 511-525. 10. S. Oblezin, Discrete symmetries of systems of isomonodromic deformations of secondorder Fuchsian differential equations, Funct. Anal. Appl. 38:2, (2004), 111-124. 11. S. Oblezin. Discrete structure of some Schlesinger systems on the Riemann sphere and the Hecke correspondences, Czechosl. J. of Phys., 53:11 (2003), 1085-1092. 12. S. Oblezin, Isomonodromic method for Fuchsian differential equations of second order on the Riemann sphere and Hecke correspondences, (in Russian), in "Certain problems in Fundamental and Applied Mathematics", Moscow, 2003, 61-76. 13. S. Oblezin, Artin hypothesis and character theory for finite groups (in Russian), in Proc. Int. School, Kiev, 2001, 150-167.