Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/poncelet/2012zeta/talks/logachev.html
Дата изменения: Thu Jan 31 03:00:18 2013 Дата индексирования: Mon Feb 4 17:53:38 2013 Кодировка: Поисковые слова: http astrokuban.info astrokuban |
![]() |
![]() |
Conference "Zeta Functions"November 19 - 23, 2012Moscow, Russia |
![]() |
![]() |
Organisers: Marc Hindry (Institut de Mathématiques de Jussieu) Philippe Lebacque (Laboratoire de Mathématiques de Besançon), Michael Tsfasman (CNRS, Laboratoire Poncelet, Institute for Information Transmission Problems), Alexey Zykin (Laboratoire Poncelet, State University Higher School of Economics)
Monday, November 19, 16.30 - 17:30
Video: [mp4]
The $L$-function under consideration is the simplest type of the $L$-function $L(\phi, U)$ of a Drinfeld module $\phi$ of rank 1 over $F_q[\theta]$. These Drinfeld modules are the twisted Carlitz modules. Its analytic rank is the order of 0 of $L(\phi, U)$ at $U=1$. A version of the Lefschetz trace formula gives us an explicit expression of $L(\phi, U)$. We get immediately that there exists a coset of index $(q-1)^2$ in $\Hom(\Gal(F_q(\theta)), Z/(q-1))$ --- the set of all twists --- such that the analytic rank of corresponding Drinfeld modules is $\ge 1$. We present results of computer calculations of rank for the case $q=3$ which show that there are examples of twists whose rank is $\le 3$. It is unknown whether there exist examples of higher rank, and what is the distribution of twists of rank 2, 3.