Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1159125&uri=1.html
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 03:56:49 2016
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п п п п п п п п п
Научная Сеть >> В.<b style="color:black;background-color:#ff66ff">П</b>. Скулачев. Законы биоэнергетики
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посетите Сервер по Физике Обратите внимание!
 
  Наука >> Физика >> Специальные разделы >> Биофизика | Обзорные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

Обзорные статьиВ.П. Скулачев. Альтернативные функции клеточного дыхания

Обзорные статьиА.Н. Тихонов. Молекулярные моторы. Часть 1. Вращающиеся моторы живой клетки

В начало...


Законы биоэнергетики. В. П. СКУЛАЧЕВ. Продолжение

ВТОРОЙ ЗАКОН БИОЭНЕРГЕТИКИ

Любая живая клетка всегда располагает как минимум двумя "энергетическими валютами": водорастворимой (АТФ ) и связанной с мембраной ( либо ).


Продолжая аналогию с финансами, можно сказать, что клетка держит часть капитала в наличных деньгах, а часть - в чеках, причем часто в двух разных банках. Чтобы убедиться в справедливости этого закона, придется бегло познакомиться с энергетикой клеток, принадлежащих к различным царствам живой природы. Основные типы энергетики клетки показаны на рис. 3-5.

Рис. 3. Энергетика бактерий: а - морские аэробные бактерии, использующие в качестве первичной "энергетической валюты". Ионы H+ откачиваются из клетки за счет энергии света или окисления кислородом субстратов дыхания, например: углеводов, жиров или белков (1), и возвращаются назад сопряженно с синтезом АТФ или совершением других видов химической, механической или осмотической работы (2). АТФ может образовываться также гликолизом (3) и использоваться для поддержания осмотической или химической работы по биосинтезу необходимых клетке веществ (4). может также превращаться в путем обмена внешних ионов H+ на внутренние ионы Na+ (5). В свою очередь, поддерживает осмотическую или механическую работу. У пресноводных аэробных бактерий отсутствуют процессы, связанные с Na+, то есть (5) и (6); б - морские аэробные бактерии, использующие в качестве первичной "энергетической валюты" . Эти бактерии способны к существованию в условиях, когда поддержание невозможно. Na+ откачивается из клетки за счет дыхания (1) и возвращается внутрь сопряженно с образованием АТФ или совершением осмотической либо механической работы (2). АТФ используется при химической или осмотической работе (3); в - морские анаэробные бактерии, первично использующие . Живут за счет образования АТФ при расщеплении субстратов гликолиза (1). АТФ тратится либо непосредственно на совершение химической и осмотической работы (2), либо на образование (3). Последняя также поддерживает осмотическую работу (4) или дает (5), используемую для той же цели (6). У пресноводных бактерий процессы (5) и (6) отсутствуют; г - морские анаэробные бактерии, первично использующие . Ситуация отличается от рис. 3, в тем, что АТФ сразу превращается в , минуя стадию образования .

 

У морских бактерий (рис. 3) имеются по меньшей мере АТФ и , но очень часто также и . У пресноводных бактерий (на рисунке не показано), "валютой" служат АТФ и . Что касается , то она, как правило, отсутствует из-за низкой концентрации Na+ в среде обитания.

 


Рис. 4. Энергетика растительной клетки. Энергия света используется для накачки ионов H+ внутрь тилакоидов хлоропластов (1). Ионы H+ выходят из тилакоидов с образованием АТФ (2). В митохондриях дыхание поддерживает откачку H+ из органелл (3). При входе ионов H+ в митохондрии происходит синтез АТФ или совершается осмотическая работа (4). Третьим механизмом синтеза АТФ может быть гликолиз (5). Образовавшись тем или иным способом, АТФ расходуется затем при различных видах работы (6) или тратится на создание на плазмалемме (7) либо тонопласте - мембране вакуоли (10). затем используется для осмотической работы (8, 11) или откачки Na+ из клетки (9). Роль ограничивается стабилизацией на плазмалемме.




Клетки растений (рис. 4) располагают АТФ и . Что касается , то она может вторично (за счет ) образовываться на плазмалемме, но обычно играет подчиненную роль фактора, стабилизирующего уровень на этой мембране. Животная клетка (рис. 5) располагает всеми тремя "валютами". При этом для плазмалеммы характерна натриевая энергетика, а для внутриклеточных мембран - протонная. Живые системы, имеющие только одну конвертируемую форму энергии, не обнаружены.

Рис. 5. Энергетика животной клетки. Ионы H+ откачиваются из митохондрий за счет дыхания (1) и возвращаются назад сопряженно с синтезом АТФ или совершением митохондриями осмотической работы (2). АТФ может также получаться при гликолизе (3) и использоваться для производства работы (4), а также создания на плазмалемме (5). Затем расходуется для концентрирования веществ в клетке, то есть для осмотической работы (6). Кроме того, АТФ поддерживает генерацию на мембранах секреторных гранул (7), лизосом и эндосом, также способных совершать определенные виды осмотической работы (8)

ТРЕТИЙ ЗАКОН БИОЭНЕРГЕТИКИ


"Энергетические валюты" клетки могут превращаться одна в другую. Поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.


Иначе говоря, не столь важно, в какой "валюте" поступит доход, если "валюта" эта конвертируемая. Взаимопревращение АТФ, и осуществляется специальными ферментами. Взаимопереход АТФ катализируется H+-АТФ-синтазой, превращение АТФ обеспечивается Na+-АТФ-синтазой, а равновесие осуществляется H+ / Na+ -антипортером.
Наиболее яркой иллюстрацией действия третьего закона служат примеры тех редких форм жизни, которые используют одну-единственную энергопроизводящую реакцию для поддержания всего разнообразия энергоемких процессов. Такого рода примеры описаны, как правило, применительно к бактериям, избравшим для своего существования определенные природные ниши.
Так, анаэробные бактерии могут за счет гликолиза производить АТФ, который затем используется в процессах энергообеспечения либо непосредственно, либо после превращения в или . Железобактерии способны окислять кислородом ион Fe2 + в ион Fe3 +, образуя . Эта единственная реакция дыхания питает все потребляющие энергию процессы, в том числе синтез АТФ из АДФ и H3РO4 . Описаны бактерии, использующие только свет в качестве энергетических ресурсов. Но, пожалуй, наиболее удивительна энергетика бактерии Propionigenium modestum, обнаруженной недавно в иле морского пролива неподалеку от Венеции. У этой бактерии нет ни фотосинтеза, ни дыхания, ни гликолиза. Вся необходимая энергия черпается из единственной реакции декарбоксилирования янтарной кислоты в пропионовую. Этот процесс сопряжен с генерацией , которая утилизируется для совершения осмотической работы либо превращается в АТФ посредством Na+-АТФ-синтазы. Propionigenium modestum живет в анаэробных условиях вместе с другими бактериями, образующими янтарную кислоту в качестве конечного продукта брожения.
В то же время гораздо чаще встречаются случаи, когда живая клетка располагает несколькими источниками энергии. Так, животные и некоторые виды бактерий могут использовать для энергообеспечения как дыхание, так и гликолиз. В клетках растений и фотосинтезирующих бактерий к этим двум процессам добавляется еще и фотосинтез. Однако, как правило, даже и в этих более сложных случаях какой-то один процесс доминирует в каждый конкретный момент времени, чтобы смениться другим при изменении условий.


ЗАКЛЮЧЕНИЕ


Анализ всего разнообразия форм жизни позволяет сформулировать основные законы энергообеспечения живой клетки, которые имеют всеобщее значение. Согласно этим законам, клетка сначала превращает энергетические ресурсы в какую-либо "конвертируемую валюту", а затем уже использует ее для оплаты энергоемких процессов. "Валют" таких известно три: АТФ, и , причем любая клетка всегда располагает АТФ и либо АТФ и . В наиболее эволюционно продвинутой животной клетке имеются все три вида "энергетической валюты". Существуют особые механизмы взаимопревращения АТФ, и . Чтобы выжить, клетке достаточно иметь хотя бы одну реакцию, производящую любой из видов "валюты" за счет внешних энергетических ресурсов.


РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА


1. Уайт А., Хендлер Ф., Смит Р. и др. Основы биохимии. М.: Мир, 1981.
2. Скулачев В.П. Аккумуляция энергии в клетке. М.: Наука, 1969.
3. Скулачев В.П. Мембранные преобразователи энергии. М.: Высш. шк., 1989.
4. Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989.
5. Скулачев В.П. Кислород в живой клетке: добро и зло // Соросовский Образовательный Журнал. 1996. N 3. С. 4-10.
* * *
Владимир Петрович Скулачев, действительный член Российской Академии наук, президент Российского биохимического общества, директор Института физико-химической биологии им. А.Н. Белозерского МГУ. В.П. Скулачев - автор фундаментальных работ по энергетике клетки, 300 статей в российских и международных журналах, шести монографий и одного учебника. Лауреат Государственной премии СССР, премии имени А.Н. Баха Президиума АН СССР. Основатель отечественной школы энергетики биологических мембран. В течение многих лет читает курс биоэнергетики для студентов биологического факультета МГУ.
? Скулачев В.П., 1997




Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования