Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/hst/wfc3/documents/ISRs/WFC3-2008-46.pdf
Дата изменения: Mon Jun 15 22:03:06 2009
Дата индексирования: Tue Nov 24 12:28:32 2009
Кодировка:

Поисковые слова: http www.badastronomy.com bad tv foxapollo.html
Instrument Science Report WFC3 2008-046

WFC3 UVIS Ground P-flats
E. Sabbi, M. Dulude, A.R. Martel, S. Baggett, H. Bushouse June 12, 2009

ABSTRACT The Wide Field Camera 3 (WFC3) has two channels, one designed to acquire optical and ultraviolet data (UVIS) and one to operate in the infrared (IR). During WFC3 thermalvacuum (TV3) testing in 2008, the UVIS20 procedure, "UVIS Flat Fields", with a total of ~75,000 e- per pixel were acquired in all UVIS filters. These individual flat-fields have been processed into calibration reference flat-fields (P-flats) and installed in the WFC3 pipeline for use with on-orbit data.

Introduction
During spring 2008, WFC3 underwent its third campaign of Thermal Vacuum testing (TV3). Flat fields (UVIS20 procedure) ­ images taken while the detector is uniformly illuminated ­ were acquired at the Goddard Space Flight Center as part of the WFC3 calibration plan in all the UVIS imaging filters. The CASTLE Optical Stimulus (OS) system was used to provide flat field illumination of the flight detector UVIS-1'. The IR external flat-field programs in TV3 (IR13S01A and IR13S01B) are discussed separately (Bushouse 2008). The WFC3/UVIS ground-based reference bias and darks are discussed in Martel et al. (2008a) and Borders (2009), while the python scripts used to generate the entire WFC3/UVIS reference dataset are described in detail in Martel et al. (2008b). In this report we focus on the high-frequency pixel-to-pixel flat-fields (P-flats) and the characteristics of the resulting files. The p-flats have all been delivered to the Calibration Database System (CDBS) and into the archive (MAST). This ISR is organized as follow: in section 1 we present the data, while section 2 describes how the P-flats were generated. Section 3 discuss how low-frequency flat-fields (L-flats) will further improve the quality of the science data. In section 4 we compare the
Operated by the A ssociation of Univ ersities for Research in A stron omy, Inc., for the National A eron autics and Space Administration

1


properties of the P-flats with the requirements listed in the WFC3 Contract End Item (CEI). Conclusions are reported in section 5.

1. Data
During TV3, CASTLE flat-fields were acquired only in the standard configuration of four amplifiers ABCD, gain=1.5 and binning=1x1. Flat-fields with the OS Xenon lamp were taken with the detector at its nominal operating temperature of -82C (IUVDETMP header keyword). A subset of ultraviolet (UV) flat fields has been also acquired at warmer temperature (IUVDETMP=-49C) using the deuterium lamp to achieve higher count rates. The UVIS channel is equipped with 47 filters and one UV grism. Of the 47 filters, 42 are full-frame filters (18 broad, 8 medium, and 16 narrow-band) while 5 are 'QUAD' filters, where each filter covers 4 different bandpasses, one per quadrant in the field of view. Similar to ACS, WFC3 has two Main Electronics Boxes (MEB); one has now been chosen as primary for flight (MEB2) while the other is the spare (MEB1). During ground testing, before the flight MEB had been designated, flatfields were acquired using each of the MEBs. To maximize the signal-to-noise in the final P-flats (i.e., at least 75,000 e- total in each filter), all data have been stacked, regardless of MEB used. Comparisons between raw MEB1 and MEB2 flat-fields show that in each quadrant both cold and warm flatfields differ less than ~0.7%. Ratios of MEB1/MEB2 raw warm and cold flats are shown in Figure 1.

Figure 1: Ratios of MEB1/MEB2 raw flat-fields in the filters F225W (left) and F606W (right) filters. F225W images have been acquired with the detector at -49o C, F606W images at -82o C. Tables 1 and 2 in Appendix A of this ISR list for each full-frame and quad-filter the raw file name, the temperature, the electronic box, the OS lamp used, and the count rates for all the images used to generate the P-flats.

2


2. GENERATION OF THE PIXEL-TO-PIXEL FLAT FIELDS
Full-frame filters For each filter, P-flats were generated with the Python scripts described in Martel et al. (2008b). These scripts process the raw images calling the standard calibration pipeline calwf31 (Version 1.3 delivered on March 13th, 2009, also recorded in the reference file header keyword CAL_VER) to calibrate each individual exposure, and then the Pyraf task imcombine is used to stack the exposures for a given filter into a final flat-field. The calibration switches in the header of the input images determine which calibration steps calwf3 will perform. Similarly the bias and dark reference files used to calibrate the individual flat-field images are selected from the header of the input images. Therefore, before beginning any processing, we updated the header of the raw images with the mostup-to-date reference files and tables. As a first step, calwf3 initializes the image error (ERR) arrays (extensions 2 and 5) and assigns to each pixel of the raw image an errors (in unit of DN), which depends on bias, gain and readnoise values, listed in the detector calibration parameter table (header keyword CCDTAB, file name *_ccd.fits). We set the DQICORR=PERFORM in the raw image headers in order to flag known bad pixels and columns into the data quality (DQ, extensions 3 and 6) arrays. At this point calwf3 also looks for saturated pixels in the science (SCI, extensions 1 and 4) arrays. Any pixel value in the SCI arrays that is greater than the SATURATE value listed in the CCDTAB will be flagged in the DQ array. Saturated pixels in the overscan region of the SCI arrays will be also flagged. CALWF3's next step is to fit the bias level from the CCD overscan regions and subtract it from the image data (BLEVCORR=PERFORM). The boundaries of the overscan regions are taken from the *_osc.fits reference file (header keyword OSCNTAB). Saturated pixels in the overscan regions will be ignored. Calwf3 subtracts the bias image reference file (header keyword BIASFILE, file name *_bia.fits, see Martel et al. 2008a, header keyword BIASCORR=PERFORM) and then trims the overscan regions from the SCI array. We set CRCORR to PERFORM to remove cosmic rays (CRs) from the input images. The number of iterations for CR rejection, the sigma levels to use for each iteration, and the spill radius to use during detection are determined by the Cosmic Ray Rejection parameter table (header keyword CRRREJTAB, file name crr.fits). Finally we subtracted the dark image (DARKCORR=PERFORM, DARKFILE=*_drk.fits). Once all single images from a given filter have been fully processed with calwf3, they were stacked together using the Pyraf task imcombine. The final SCI arrays were normalized to a level of 1.0, with respect to the median value in a 100x100 pixel box of quadrant A (box coordinate x=1032-1133; y=328-429); this region has been chosen because it is relatively free of the "droplet" features (Brown et al. 2008a). In particular, Chip 2 has been divided by the same normalization value as Chip1 to preserve the overall sensitivity difference between the two CCDs. The ERR arrays of the combined images were also normalized to the same scale factor used for the SCI arrays. As done also for For a detailed description of calwf3 refer to the HST Data Handbook for WFC3 (Kim Quijano et al. 2009)
1

3


the dark reference files (Martel et al. 2008b, Borders et al. 2009), and the IR p-flats (Bushouse 2008) the DQ of the flat-field reference files were uniformly set to zero, to avoid the propagation of CR-hit and bad pixels flags into the science data. The flat-field count rates for both the chips, after they have been normalized, are shown in Figure 2 (broad-band filters) and 3 (intermediate and narrow-band filters). The scale of the y-axis is logarithmic to highlight the number of pixels that are deviating from the mean value. With the exception of the F953N filter, the number of pixels that deviates more than 10% from the mean value is less than 0.7%. In the F593N filter the evident broadening of the mean peack is due to the strong fringing that affects this filter (e.g. Sabbi 2008). With the exception of the warm broad-band flat-fields (Figure 2), in both chip the mean response is 1.0. In the warm broad-band filters, only Chip 1 is peaked at 1.0, while in Chip 2 the peak is at higher values. The difference between the 2 chips is wavelength dependent, and increases toward the UV. This difference is due to the different throughput of the two chips in the UV (Brown 2008b). All files have been delivered to CDBS and uploaded to the iref directory at STScI. For the most updated list of reference files, consult the web page http://www.stsci.edu/hst/observatory/cdbs/SIfileInfo/WFC3/reftablequeryindex.

Figure 2: Count rates for Chip1 (continuous line) and Chip2 (dashed line) in broadband filter P-flats.
4


Figure 3: Count rates for Chip1 (continuous line) and Chip2 (dashed line) in intermediate and narrow-band filter P-flats. Quad filters As for the full-frame P-flats, quad P-flats were generated using the Python scripts by Martel (2008). For each filter, the individual raw-images were processed with the standard calibration pipeline calwf3, and then stacked together using imcombine. Because of the different response of the various quadrants of each QUAD filter, each quadrant was normalized to a level of 1.0, with respect to the median value in a 100x100 pixel box of that quadrant (quadrant A x= 456, y= 1585; quadrant B x= 3254, y= 1516; quadrant C x= 1171, y= 974; quadrant D x= 3718, y= 977). These regions were selected to avoid the boundaries between the quadrants and minimize the number of droplet features. In Quad1 there are three UV filters (FQ232N, FQ243N, and FQ378N) and one optical (FQ437N) bandpass. In order to get enough counts in the UV filters, we acquired

5


exposures with the deuterium lamp at warm temperature (-49C). In this setup the FQ437N filter is nearly saturated, therefore P-flats for this filter were obtained using the xenon lamp, with the detector at its nominal operating temperature of -82C. As a result, Quad1 is a combination of warm and cold data.

3. L-FLATS.
While the external flat-fields acquired in TV3 contain information about the response of the CCDs and the transmission of the UVIS filters and of the WFC3 optics, they are expected to differ from on-orbit flats because of geometric distortion and the transmission of the HST optics. The differences between the ground and on-orbits flats will be calibrated and removed following the same approach used by the ACS team (Mack et al. 2002, Sirianni et al. 2005): we will observe a moderately dense star fields (in most of the cases Centauri) at nine different positions, separated by hundreds of pixels. Fluxes from the same stars will be therefore measured in nine largely separated positions. These data will be fit with a low order polynomial, that will be combined with the ground based flat-fields to remove both the high and the low frequency structures, and to provide a estimate of the chip-to-chip normalization. Because of variations in the filter transmissions, low-frequency structures will vary as a function of wavelength. During Cycle 17, data will be acquired to directly generate L-flat corrections in several broadband filters. The remaining narrow-, intermediate-, and broad-band low frequency corrections will be obtained through a linear interpolation of the acquired data (see Sabbi et al. 2009 for a description of the observations). The L-flat will also allow us to improve the quality of the F336W flat-field that is affected by the bowtie, and to correct the effect introduced by the temperature in the warm P-flat. F336W P-Flat. Before generating the P-flats, all raw images have been inspected for bowtie anomaly (Baggett et al. 2008), and exposures contaminated by bowties were discarded. The only exception is the filter F336W, where no images without bowtie were found. As a consequence the inverse of this feature will be imprinted on the flat-fielded science data in this filter. This effect will be removed by the low-frequency flat-filed correction (Lflat) that will be determined during SMOV and Cycle 17 by observing 47 Tuc and Cen (Sabbi et al. 2009). Because of the bowtie contamination, this filter should not be used to derive L-flat corrections in other filters. Warm P-flats As mentioned earlier UV P-flats were generated using data acquired with the detector at a temperature warmer than that used on-orbit. Any differences in the flat-fields due to the temperature differences will be removed by the L-flats, therefore UV ground-based flatfields will differ from on-orbit flats also because of the different temperature of the detector. These differences will be also removed by the L-flats that will be acquired during Cycle 17.

6


To quantify the errors introduced by using warm P-flat, we have compared warm P-flats (with good S/N) with cold P-flats (low S/N due to OS limitations). This test indicated that at least half of the displacement between the two peaks in the UV histograms shown in Fig. 1 is due to the different throughput of the two chips in the UV (Brown et al. 2008c), while the remaining half can be attributed to the temperature at which the detector was operated. The warm P-flats will introduce an extra 10% uncertainty in the photometry.

4. CEI VERIFICATION
Ground-based UVIS external flat-fields can be used to verify some of the requirements listed in the CEI. CCD Detector Uniformity: CEI specification 4.6.11.1 requires that the CCD detector shall be correctable to a uniform gain per pixel to < 2% at all wavelegths, and <1% between 450 and 800 nm. No more than 5% of all pixels shall have response out with +/10% of the mean response. To verify that the UVIS channel meets this specification we have measured the RMS residuals in single images after new P-flat reference file had been applied, and we found that for all of the UVIS imaging filters, the RMS are 0.5%, and therefore the UVIS channel meets this goal. Figs. 2 and 3 show that with the exception of the F953N filter, in the full-frame filters no more than 0.7% of all the pixels have response out with +/- 10% of the mean response, and therefore the UVIS channel meets this goal. The majority of the deviating pixels are in the corners of the images. These features are attributed to the ground system optical stimulus as they are not seen in the internal flat-fields (although the internals do not use all the WFC3 optics). On-orbit data will be used to evaluate the corners. CCD Detector Low Spatial Frequency Flat-field Structure: CEI specification 4.6.11.2 requires that large scale flat-field uniformities shall not exceed 3% peak to peak including the WFC3 optical system. Existing large-scale uniformities shall be corrected to < 2%. For each filter we have applied the P-flats to one of the raw images. This test showed that all the large-scale structures are correctable to a few tenths of a percent, and therefore the UVIS channel meets this goal. CCD Detector Non-functional Pixels: CEI specification 4.6.11.3 requires that no more than 1% of the pixels may be non-functional; as shown in Fig.2 and 3, the WFC3 UVIS detectors easily satisfy the expectation.

5. CONCLUSIONS
We have produced a set of full-frame and quad P-flats using ground-based data acquired during TV3. These data will be used to calibration early on-orbit SMOV and Cycle 17 images. On-orbit L-flat data will be used to update the P-flats to fully calibrated science data. An analysis of the ground-based flat-fields shows that the UVIS CCD detectors meet the CEI specifications 4.6.11.1, 2, and 3. All files have been delivered to CDBS and uploaded to the iref directory at STScI.
Ackno wledgmen ts: W e thank Jason K alirai for r efereeing th is ISR and provid ing usefu l suggestions.

7


References
Baggett, S., Martel, A.R., Sabi, E., & Deustua, S. 2008, WFC3 ISR 2008-51, "The WFC3/UVIS Bowtie Anomaly", in preparation Borders, T., Baggett, S., Martel, A.R., Bushouse, H. 2009, WFC3 ISR 2009-09, "The WFC3/UVIS Reference Files: 3. Updated Biases and Darks" Brown, T., Hartig, G., & Baggett, S. 2008a, WFC3 ISR 2008-09, "WFC3 TV3 Testing: UVIS Window Contamination" Brown, T.M. 2008b, WFC3 ISR 2008-48, "WFC3 TV3 Testing: System Throughput on the UVIS Build 1' Detector" Bushouse, H. 2008, WRC3 ISR 2008-28, "WFC3 IR Ground P-Flats" Kim Quijmano, J., Bushouse, H., & Deustua, S. 2009, "HST Data Handbook for WFC3" Version 1.0 (Baltimore: STScI) Martel, A.R., Baggett, S., Bushouse, H., & Sabbi, E. 2008a, WFC3 ISR 2008-42, "The WFC3/UVIS Reference Files: 2. Biases and Darks" Martel, A.R., Baggett, S., Bushouse, H. & Sabbi, E. 2008b, WFC3 TIR 2008-01, "The WFC3/UVIS Reference Files: 1. The Script" Available upon request. Sabbi, E., et al. 2009, WFC3 ISR 2009-006 "WFC3 Calibration using Galactic Clusters" (in preparation) Sabbi E. 2008, WFC3 ISR 2008-12 "UVIS CASTLE Photometric Filter Flat Field Atlas" APPENDIX A: CHARACTERISTICS OF THE DATA Table 1: Log of the files used to create the full-frame P-flats. Files marked with an asterisk are affected by the bowtie.
Filter F200LP F2 1 8 W F2 2 5 W F2 7 5 W F2 8 0 N File iu200604r_08088133643 iu200604r_08098190356 iu200604r_08093223656 iu201a03r_08055054437* iu201a03r_08055075437* iu201a06r_08055060210 iu201a06r_08055081210 iu202106r_08111201444 iu201a02r_08055075437 iu202102r_08111195436 iu201a07r_08055063742 iu201a09r_08055071345 iu201a07r_08055084742 iu201a09r_08055092345 iu200602r_08088133643 iu200602r_08093223656 iu200602r_08098190356 iu200402r_08087212327* iu200402r_08092131425* iu200402r_08097201126* iu202202r_08111141319 iu202202r_08111165419 iu200403r_08087212327 Temp erature (C) 82 82 82 49 49 49 49 49 49 49 49 49 49 49 82 82 82 82 82 82 49 49 49 Lamp Xe Xe Xe D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 Xe Xe Xe Xe Xe Xe D2 D2 Xe 1 2 2 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 2 2 2 2 1 MEB Counts (e-) 39100 41500 42200 41900 42200 39900 38800 39800 38300 38500 19500 19500 19200 19200 19201 24991 24731 36200 35700 34800 32900 32900 36200

F3 0 0 X F3 3 6 W

F3 4 3 N

8


F350LP F3 7 3 N F3 9 0 M F3 9 0 W F3 9 5 N F4 1 0 M F4 3 8 W F4 6 7 M F4 6 9 N F4 7 5 W F4 7 5 X F4 8 7 N F5 0 2 N F5 4 7 M F5 5 5 W F600LP F6 0 6 W F6 2 1 M F6 2 5 W

iu200403r_08097201126 iu200606r_08088135611 iu200606r_08093225649 iu200606r_08098192349 iu200405r_08087215226 iu200405r_08092134324 iu200405r_08097204025 iu200409r_08087221016 iu200409r_08092140114 iu200409r_08097205815 iu200407r_08092134324 iu200407r_08097204025 iu20040ar_08087222637 iu20040ar_08092141735 iu20040ar_08097211436 iu20040cr_08087222637 iu20040cr_08087222637 iu20040cr_08087222637 iu20040er_08087224144 iu20040er_08092143242 iu20040er_08097212943 iu20040hr_08087225623 iu20040hr_08092144721 iu20040hr_08097214422 iu20040fr_08087225623 iu20040fr_08092144721 iu20040fr_08097214422 iu20040jr_08087231110 iu20040jr_08092150208 iu20040jr_08097215907 iu200607r_08088135611 iu200607r_08093225649 iu200607r_08098192349 iu20040kr_08087232021 iu20040kr_08092151119 iu20040kr_08097220818 iu20040mr_08087233148 iu20040mr_08092152246 iu20040mr_08097221945 iu20040or_08087233148 iu20040or_08092152246 iu20040or_08097221945 iu20040qr_08087234903 iu20040qr_08092154001 iu20040qr_08097223700 iu200609r_08093231601 iu200609r_08098194301 iu20080er_08088062820 iu208a0dr_08092174744 iu208a0dr_08098045144 iu20080hr_08088065959 iu208a0gr_08092181923 iu208a0gr_08098052323 iu20080gr_08088065104 iu208a0fr_08092181028

-

49 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe

2 1 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 2 1 2

34700 36600 37900 37300 25635 25330 24689 37800 37400 36500 36500 35700 24975 24717 24115 37500 37200 36300 37500 37200 36500 38300 38200 37400 38100 38000 37200 38000 37800 37100 32300 38000 37200 38000 38000 37100 38300 38300 37300 38100 38100 37300 41700 41600 40900 37700 37000 38900 38900 37500 39500 39000 38000 39600 39100

9


F6 3 1 N F6 4 5 N F6 5 6 N F6 5 7 N

F6 5 8 N F6 6 5 N F6 7 3 N F6 8 0 N F6 8 9 M F7 6 3 N F7 7 5 W F8 1 4 W F8 4 5 M F850LP F9 5 3 N

iu208a0fr_08098051428 iu200802r_08088044930 iu208a02r_08092162604 iu208a02r_08098033005 iu200804r_08088045806 iu208a04r_08092162604 iu208a04r_08098033005 iu200806r_08088053821 iu208a05r_08092170137 iu208a05r_08098040537 iu200808r_08088053821 iu208a07r_08092170137 iu208a07r_08098040537 iu200809r_08088060549 iu208a08r_08092172552 iu208a08r_08098042952 iu20080br_08088060549 iu208a0ar_08092172552 iu208a0ar_08098042952 iu20080dr_08088062820 iu208a0cr_08092174744 iu208a0cr_08098045144 iu20080ir_08088065959 iu208a0hr_08092181923 iu208a0hr_08098052323 iu20080lr_08088072443 iu208a0kr_08092184414 iu208a0kr_08098054814 iu20080mr_08088072443 iu208a0lr_08092184414 iu208a0lr_08098054814 iu20080or_08088074513 iu208a0nr_08092190447 iu208a0nr_08098060847 iu20080pr_08088074513 iu208a0or_08092190447 iu208a0or_08098060847 iu20080rr_08088080332 iu208a0qr_08092192313 iu208a0qr_08098062713 iu20060ar_08093231601 iu20060ar_08098194301 iu208a0rr_08092194752 iu208a0rr_08098065152

-

82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe

2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2

38100 44100 37800 36900 43800 37500 36700 44300 38100 37300 29523 25322 24781 44000 37500 36900 44600 38100 37400 44600 37800 37100 41300 40800 40100 41300 41000 40100 37200 41000 37100 37400 37800 36900 39200 39000 38100 37200 38000 37200 37500 36900 39500 38900

Table 1: Same as Table 1, but for the quad filters
Filter F F F F F Q Q Q Q Q 5 5 5 5 6 0 0 0 0 7 8 8 8 8 4 N N N N N iu iu iu iu iu 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 0 0 0 0 0 cr er cr er cr File _ _ _ _ _ 0 0 0 0 0 8 8 8 8 8 0 0 0 0 0 8 8 9 9 8 8 8 5 5 8 1 1 1 1 1 65 75 20 31 65 3 6 9 2 3 4 2 4 2 4 8 5 7 4 8 Temp erature (C) 82 82 82 82 82 Lamp Xe Xe Xe Xe Xe 1 1 2 2 1 MEB Counts (e-) 1222 1215 1169 1170 4785

10


F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

6 6 6 5 5 5 5 6 6 6 6 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8

4 4 4 5 5 5 5 2 2 2 2 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N

iu20050er_08088175625 iu20050cr_08095120947 iu20050er_08095131224 iu20050cr_08088165348 iu20050er_08088175625 iu20050cr_08095120947 iu20050er_08095131224 iu20050cr_08088165348 iu20050er_08088175625 iu20050cr_08095120947 iu20050er_08095131224 iu203A02r_08010043143 iu203A04r_08010044344 iu203A06r_08010045545 iu203A08r_08010050808 iu203A02r_08010053943 iu203A04r_08010055144 iu203A06r_08010060345 iu203A08r_08010061609 iu203A02r_08010064843 iu203A04r_08010070045 iu203A02r_08010043143 iu203A04r_08010044344 iu203A06r_08010045545 iu203A08r_08010050808 iu203A02r_08010053943 iu203A04r_08010055144 iu203A06r_08010060345 iu203A08r_08010061609 iu203A02r_08010064843 iu203A04r_08010070045 iu203A02r_08010043143 iu203A04r_08010044344 iu203A06r_08010045545 iu203A08r_08010050808 iu203A02r_08010053943 iu203A04r_08010055144 iu203A06r_08010060345 iu203A08r_08010061609 iu203A02r_08010064843 iu203A04r_08010070045 iu203A02r_08010043143 iu203A04r_08010044344 iu203A06r_08010045545 iu203A08r_08010050808 iu203A02r_08010053943 iu203A04r_08010055144 iu203A06r_08010060345 iu203A08r_08010061609 iu203A02r_08010064843 iu203A04r_08010070045 iu200504r_08088150732 iu200506r_08088152209 iu200508r_08088153646 iu20050Ar_08088155144 iu200504r_08095102332

-

82 82 82 82 82 82 82 82 82 82 82 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 82 82 82 82 82

Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 Xe Xe Xe Xe Xe

1 2 2 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2

4785 4777 4773 18547 18458 17584 17608 7167 7171 7151 7151 8162 8205 8170 8220 8201 8277 8142 8160 8120 8174 32211 32334 32175 32386 32244 32533 32018 32040 32003 32141 2463 2442 2446 2431 2426 2444 2405 2406 2397 2405 3520 3520 3495 3507 3475 3494 3439 3438 3417 3425 5275 5280 5284 5287 5016

11


F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 9 9 9 9 9 9 6 6 7 7 6 6 7 7

8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 8 8 3 3 0 0 2 2 1 1 5 5 3 3 2 2

7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 9 9 7 7 6 6 4 4 9 9 0 0 4 4 7 7

N N N N N N N N N N N N N N N M M M M M M M M M M N N N N N N N N N N N N N N N N N N N N N N N N N N

iu200506r_08095103809 iu200508r_08095105246 iu20050Ar_08095110744 iu200504r_08102033031 iu200506r_08102034508 iu200504r_08088150732 iu200506r_08088152209 iu200508r_08088153646 iu20050Ar_08088155144 iu200504r_08095102332 iu200506r_08095103809 iu200508r_08095105246 iu20050Ar_08095110744 iu200504r_08102033031 iu200506r_08102034508 iu200504r_08088150732 iu200506r_08088152209 iu200508r_08088153646 iu20050Ar_08088155144 iu200504r_08095102332 iu200506r_08095103809 iu200508r_08095105246 iu20050Ar_08095110744 iu200504r_08102033031 iu200506r_08102034508 iu200504r_08088150732 iu200506r_08088152209 iu200508r_08088153646 iu20050Ar_08088155144 iu200504r_08095102332 iu200506r_08095103809 iu200508r_08095105246 iu20050Ar_08095110744 iu200504r_08102033031 iu200506r_08102034508 iu200902r_08088203908 iu200902r_08096032009 iu200902r_08088203908 iu200902r_08096032009 iu200902r_08088203908 iu200902r_08096032009 iu200902r_08088203908 iu200902r_08096032009 iu200905r_08088211423 iu200905r_08096035524 iu200905r_08088211423 iu200905r_08096035524 iu200905r_08088211423 iu200905r_08096035524 iu200905r_08088211423 iu200905r_08096035524

-

82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe Xe

2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

5010 5009 5009 4800 4795 15939 15933 15933 15906 15978 15995 16004 16003 15617 15626 22618 22616 22623 22633 21961 21963 21944 21961 20975 20953 8784 8784 8788 8785 8563 8562 8562 8565 8233 8222 23212 22674 33764 33087 26876 26258 29719 29098 24993 24201 22598 22006 26466 25633 24201 23541

12