Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.stsci.edu/institute/conference/jwst2007/Presentations_Posters/haiman_talk.pdf
Äàòà èçìåíåíèÿ: Tue Mar 20 17:47:28 2012
Äàòà èíäåêñèðîâàíèÿ: Tue Feb 5 23:18:31 2013
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: m 104
O b s e r v in g t h e F ir s t S t a r s a n d B la c k H o le s

ZoltÀn Haiman
Columbia University

A s tr o p h y s ic s in th e N e x t D e c a d e

T u c s o n , A r iz o n a

S ep . 2 4 -2 8 , 2 0 0 7


T h e D a r k A g e : C a n w e C l o s e th e G a p ?

W MAP

(Re)combination: z 1100 Reionization: z 6-20 Current horizon: z=6.6


Outline of Talk
·

How large were the first objects ?
­ s te lla r c lu s te r s w ith 1 < N < 1 0 6 s ta r s ? ­ b la c k h o le s w ith 1 0 M < M < 1 0 6 M ?

[4]

·

Can future instruments reveal (feedback ) processes? [11]
­ c a n w e g o d e e p e n o u g h in th e L F s to s e e it d ir e c tly ? ­ c a n w e d e te c t IG M io n iz a tio n / m e ta lic ity ( o r la c k o f it: p o p III ? )

·

The first black holes
­ c a n w e c la r ify h o w th e y fo r m e d a n d e v o lv e d in to q u a s a r s ­ fin d in g h ig h - z S M B H s w ith L IS A ( a n d th e ir c o u n te r p a r ts )

[5]

·

Assembly of proto-galaxies: large-scale gas in-fall
­ c a n w e d e te c t d iffu s e L y m a n / B a lm e r e m is s io n ? ­ is c o o lin g r a d ia tio n d e te c ta b le ?

[5]


Seed Fluctuations on Small Scales
extrapolation by a factor of about 100 in linear scale CMB LSS Dark Age mass function of DM halos directly tested in simulations at z=20; M=105 M
Yoshida et al. (2003) Mesinger et al. (2006)

Wayne Hu www


S t a r s a n d B H s in t h e f ir s t m in ih a lo s
· STARS: METAL FREE, VIA H2 COOLING - (a single?) massive star, with harder spectra - boost in ionizing photon rate by a factor of ~ 20 - return to "normal" stellar pops at Z 10-3.5 Z
(Tumlinson & Shull 2001 ; Bromm, Kudritzki & Loeb 2001; Schaerer 2002)

· SEED BLACK HOLES: (~102-6 M ) - remnants of massive (non-rotating) metal free stars (25 M M 140 M and M 260 M Heger et al 2001) - boost by ~10 in number of ionizing photons/baryon - harder spectra up to hard X-rays: smoother reionization - must eventually evolve to quasars and remnant holes
(Oh; Venkatesan & Shull; Haiman, Abel & Rees; Haiman & Menou)

· DETECTABLE ONLY INDIRECTLY - individual explosive remnants (SNe, GRBs, metal patterns) - impact on IGM (reionization) and source pop. (feedback)


G a s in C o lla p s in g D M H a lo s E x p o s e d T o :
· EARLY COSMIC BACKGROUNDS: - soft UV (11-13.6 eV) photo-dissociates H2 - soft X-rays (~1 keV) catalyze H2 formation · UV FLUX OF NEARBY SOURCES (>13.6 eV): - photo-evaporation (minihalos with < 10 km/s) - photo-dilution (halos with 10 km/s < < 50 km/s) · PAST ACTIVITY IN FOSSIL HII REGION: - gas retains heat ("entropy floor") - extra free electrons from incomplete recombination · OTHER EFFECTS: - SN blast waves, metal pollution (pop III pop II) - internal feedback (metals, UV, SNe) inside minihalos

D o m o s t m in ih a lo s f a il t o f o r m s t a r s o r b la c k h o le s ?


S F /R e io n iz a t io n H is t o r y S e lf - R e g u la t e s ?
Haiman, Abel & Rees (2000)

log [d* /dt / M yr-1 Mpc-3]

Case 1 : No net feedback
r e io n iz a t io n c o m p le t e d e a r ly s m a ll h a lo s c lo s e ly s p a c e d sm o o th H e /H c lo s e in t im e

Case 2 : Negative feedback
r e io n iz a t io n c o m p le t e d la t e r la r g e r h a lo s , fa rth er sp a ced m o re p a tch y H e /H f a r t h e r in t im e

redshift

* I F * f e e d b a c k r e g u la t e s r e io n iz a t io n h is t o r y , t h e n t h e r e w ill b e a p e r io d w it h a r o b u s t ` s t e a d y s t a t e ' s o lu t io n for the star formation history - need to know Jcrit(Mhalo,z)


Outline of Talk
·

How large were the first objects ?
­ s te lla r c lu s te r s w ith 1 < N < 1 0 6 s ta r s ? ­ b la c k h o le s w ith 1 0 M < M < 1 0 6 M ?

·

Can future instruments reveal (feedback) processes?
­ c a n w e g o d e e p e n o u g h in th e L F s to s e e it d ir e c tly ? ­ c a n w e d e te c t IG M io n iz a tio n / m e ta lic ity ( o r la c k o f it: p o p III ? )

·

The first black holes
­ c a n w e c la r ify h o w th e y fo r m e d a n d e v o lv e d in to q u a s a r s ­ fin d in g h ig h - z S M B H s w ith L IS A ( a n d th e ir c o u n te r p a r ts )

·

Assembly of proto-galaxies: large-scale gas in-fall
­ c a n w e d e te c t d iffu s e L y m a n / B a lm e r e m is s io n ? ­ is c o o lin g r a d ia tio n d e te c ta b le ?


C h a r a c t e r is t ic H a lo M a s s S c a le s
(masses at redshift z=10) · Jeans Mass · H2 cooling · HI cooling · Photo-heating 104 M


Tvir=20 K Tvir=102 K Tvir=104 K Tvir=2x105 K


z=20 z=17 z=9 z=5

1 05 M 1 08 M





1 01 0 M



JWST: 1nJy M* 107 M or Mbh 105 M (105 sec) (at z=10) few sources / amin
2

2 peak collapse redshifts


E v id e n c e f o r F e e d b a c k f r o m W M A P
H a im a n & B r y a n ( 2 0 0 6 )

ionized volume fraction

=0.09

redshift

Optical depth

=0.19

efficiency

Minihalo contribution suppressed by a factor of ~10


H o w W ill W e D e t e c t t h e F e e d b a c k ?
· Reionization could be accompanied by a drop in the global star formation rate (low-mass halos are suppressed) size , location and sharpness of any drop is uncertain

Possibilities for Detection
· Evolution of 21cm signal ( F u r l a n e t t o' s t a l k ) - mean brightness and fluctuations · Large-angle CMB polarization ( K a p lin g h a t e t a l. 2 0 0 2 - ionization history shape (3-4 differences) Holder & Haiman 03) · Small-angle kSZ and tSZ power spectrum ( S a n to s e t a l. 0 3 - Doppler / energy effects w/ACT, SPT O h e t a l. 0 3 ) · Tomography of Ly emitters (Xiaohui Fan's talk) - LF (compared to continuum) D ijk s tr a e t a l. 2 0 0 7 - systematic effect of IGM on line shape ( Z H 0 2 , S a n to s 0 4 )


H o w W ill W e D e t e c t t h e F e e d b a c k ?
More Possibilities for Detection
· Non-monotonic Evolution of IGM opacity (Cen & McDonald 2002) - improve S/N from z>5 quasar spectra · Fluctuations in IGM opacity ( W y ith e & L o e b 2 0 0 6 ) - need more sources, deeper spectra (aliasing, bias) · Direct detection in "Lilly-Madau diagram" (Barkana & Loeb 2000) - possible only if small galaxies detectable by JWST · Trace global SFR with GRBs ( M e s in g e r , H a im a n & P e r n a 2 0 0 5 ) - z>5 GRBs too rare to yield accurately trace SFR(z) · Trace global SFR with SNe ( M e s in g e r , J o h n s o n & H a im a n 2 0 0 6 ) - SN brighter (detectable) and more numerous


S N e a s t r a c e r s o f h ig h - z S F R
M e s in g e r , J o h n s o n & H a im a n ( 2 0 0 6 )

Tvir > 300 K (vcirc> 3 km/s) Tvir > 104 K (vcirc> 17 km/s) Tvir > 4.5â104 K (vcirc> 35 km/s) Tvir > 1.1â105 K (vcirc> 55 km/s)

SNR

SFRD

r e d s h if t p o in ts in d ic a te r e s u lts f r o m G O O D S ( G ia v a lis c o e t a . 2 0 0 4 )

Assume: SFR traces formation of dark matter halos * = 0.1 Salpeter IMF (0.007 SNe/M )


E x p e c t e d S N R a t e O b s e r v e d w it h J W S T
M e s in g e r , J o h n s o n & H a im a n ( 2 0 0 6 )

Assumed SNe properties:


1 /2 o f T y p e IIP ; 1 /2 o f T y p e IIL P e a k m a g n itu d e d is tr ib u tio n s (R ic h a rd s o n e t a l. 2 0 0 2 ) L ig h tc u r v e s h a p e s ( D o g g e tt & B ra n c h 1 9 8 5 ) T e m p la te s p e c tr u m ( B a r o n e t a l. 2000) FOV: 2.3 â 4.6 S im u lta n e o u s im a g in g in 2 filte r s D e te c tio n th r e s h o ld o f 3 n J y ( 1 0 ) in 4.5 µm band in 105 sec D e te c tio n th r e s h o ld o f 1 n J y ( 1 0 ) in 3 .5 µ m b a n d in 1 0 5 s e c

Assumed JWST properties:


r e d s h if t



4 - 24 SNe per ~10 arcmin2 field at z 5 at flux threshold of 3 nJy


M e t a l E n r ic h m e n t
1 . W h e n w a s s ig n if ic a n t f r a c t io n o f IG M e n r ic h e d ? 2 . W h e n d id m e t a l- f r e e s t a r - f o r m a t io n e n d ?
· First stars appear early (z~20-30) · Trace amount of metals modify stellar structure · No metal-free stars detected in local universe Metal-free stars a long-gone curiosity? BUT · Metal mixing efficiency: large vs small scales · Micro-mixing timescale? · Minihalos: reservoirs of metal-free gas?
( t o z ~ 5 ; e .g . C e n & W y it h e 2 0 0 6 )


D ia g n o s in g P o p III S t a r s : H e 1 6 4 0 å L in e
[Assumption: escape fraction of ionizing photons small] 1. Mini-quasars:
F ~
-

( O h , H a im a n & R e e s ; T u m lin s o n & S h u ll)
(Elvis et al. 1994; Zheng 1998)
$ & % '1 ! $ ! '( $ x # MBH & x # 4 & x (1 ' f # 105 M & " 0.25 % " O%

w it h = 1 - 1 .8
$! J = 25 R & x # 1 + z 1000 % " 10 ! # "

esc

)

nJy

2. Metal-Free Starbursts:
Q=N(>54.4eV)/N(>13.6eV)
$! J = 11 R & x # 1 + z 1000 % " 10 ! # " $ & % '1 ! # # # "

(Tumlinson & Shull 2000)

x SFR 1MOyr

$ & -1 & & %

! $ x # Q & x (1 ' f " 0.05 %

esc

)

nJy

1 Source per 2.3' x 4.6' observable with JWST to z ~ 12 (together with Balmer line; Oh 2002)


M e t a l- F r e e S t a r s F o r m in g a t z = 3 - 4 ?
( J im e n e z & H a im a n 2 0 0 6 , N a tu r e )

~10% stars massive, metal-free ( added to normal Salpeter IMF) · Strong He1640 Emission Line From z~3 LBG Composite - Equivalent width 2å; FWHM 1500å ( S h a p l e y e t a l . 2 0 0 3) - Cannot be explained by normal Wolf-Rayet stars · Strong Hydrogen-Ionizing Continuum from z~3 LBGs - significant flux detected at 912å ( S te id e l e t a l. 2 0 0 1 ,
S h a p le y e t a l. 2 0 0 6 )

· Strong Lyman Emitters at z~4.5 - EW distribution extends to >1000å

( M a lh o tr a & R h o a d s 2 0 0 2 )

· Extended Lyman Blobs at z~3 ( M a ts u d a e t a l. 2 0 0 4 ) - 1/3 of the 35 candidates have too little (and blue) or no continuum


G lo b a l M e t a l D is t r ib u t io n : O x y g e n P u m p in g
Hernandez-Monteagudo, Haiman, Jimenez & Verde (2007)

Can pumping analogous to Wouthuysen-Field process work for some metal line?
1 . A b u n d a n t m e t a l in r ig h t io n iz a t io n s t a t e 2 . S p in t r a n s it io n a t d e t e c t a b le f r e q u e n c y , s m a ll A c o e f f 3 . U V p u m p in g a t > 1 2 1 5 å 4 . L a r g e e n o u g h S U V B f lu x

Direct probe of IGM metal pollution at early stages of reionization


D is t o r t io n o f C M B S p e c t r u m
Hernandez-Monteagudo, Haiman, Jimenez & Verde (2007a,b)

y 10-7 is produced if OI abundance is ~10-2.5 solar at z=7, and J(1300å)~10 y 10-7 achievable with state-of-the art technology and with improvements over FIRAS detector and design (?)
(Fixsen & Mather 2002)

~ nK fluctuations on ~ arcmin scales at ~700GHZ detectable..?


Outline of Talk
·

How large were the first objects ?
­ s te lla r c lu s te r s w ith 1 < N < 1 0 6 s ta r s ? ­ b la c k h o le s w ith 1 0 M < M < 1 0 6 M ?

·

Can future instruments reveal (feedback) processes?
­ c a n w e g o d e e p e n o u g h in th e L F s to s e e it d ir e c tly ? ­ c a n w e d e te c t IG M io n iz a tio n / m e ta lic ity ( o r la c k o f it: p o p III ? )

·

The first black holes
­ c a n w e c la r ify h o w th e y fo r m e d a n d e v o lv e d in to q u a s a r s ­ fin d in g h ig h - z S M B H s w ith L IS A ( a n d th e ir c o u n te r p a r ts )

·

Assembly of proto-galaxies: large-scale gas in-fall
­ c a n w e d e te c t d iffu s e L y m a n / B a lm e r e m is s io n ? ­ is c o o lin g r a d ia tio n d e te c ta b le ?


G r o w t h o f H ig h - z S u p e r m a s s iv e B H s
z = 6 .4 3

Mbh 4 x 109 M Mhalo 1013 M



Haiman 2004 Yoo & Miralda-Escude 2005 Volonteri & Rees 2007

* CDM merger Tree + * Eddington-lim. accretion + * Instant mergers min = 30 km/s

z=20

1. Most of the BH mass from z~15 seeds: must start early 2. Gravitational wave-induced kicks > 100 km/s 3. A (modestly) super-Eddington accretion phase is required


Can gas in Tvir >104K halos cool to ~100K?
Similar to minihalos: Rely on H2 cooling and fragment on similar (few 100 M ) scales
Oh & Haiman (2002) cf: direct SMBH formation Volonteri &Rees 2005 Bromm & Loeb 2005 Begelman et al. 2006 (if there is no H2)

Main difference: contract to high densities less susceptible to feedback HD reduces temperature and fragmentation scale?
Uehara & Inutsuka 2000 Machida et al. 2005 Johnson & Bromm 2005

Gravitational waves: LISA sensitive to (105-107)/(1+z) M




Gravitational Waves from BH mergers
· LISA can detect low-frequency gravitational waves from super-massive black hole binaries -- sensitive to (105-107)/(1+z) M · · Can detect tens(?) of coalescing binaries / yr out to z>10 Cosmology: Gravity wave information alone yields dA (z) -- f (df/dt)-1 automatic `standard siren' (Schutz 1980) -- limited to few % by weak-lensing fluctuations in dA (z) Precise SMBH parameters (mass, spin, orbit) -- can compute Eddington ratio as function of M, z, etc Can we find an electromagnetic counterpart?

·


Identifying the EM Counterpart
AFTER THE MERGER IS COMPLETE: (1) Is the GW event localized well enough in space so that error box contains a unique quasar ?
( K o c s i s, F r e i , H a i m a n & M e n o u 2 0 0 5 )

BEFORE AND DURING COALESCENCE: (2) Can real-time LISA data-stream localize the source well enough in advance, so that a word-wide variability search can be triggered with wide-field instruments?
( K o c s is , H a im a n , M e n o u & F r e i 2 0 0 7 , P R D in p r e s s )


How much advance notice from LISA?
Look-back time when sky position error shrinks down to ~10 deg2
( K o c s is , H a im a n , M e n o u & F r e i 2 0 0 7 , P R D in p r e s s )

redshift

mass (solar mass)


Outline of Talk
·

How large were the first objects ?
­ s te lla r c lu s te r s w ith 1 < N < 1 0 6 s ta r s ? ­ b la c k h o le s w ith 1 0 M < M < 1 0 6 M ?

·

Can future instruments reveal (feedback) processes?
­ c a n w e g o d e e p e n o u g h in th e L F s to s e e it d ir e c tly ? ­ c a n w e d e te c t IG M io n iz a tio n / m e ta lic ity ( o r la c k o f it: p o p III ? )

·

The first black holes
­ c a n w e c la r ify h o w th e y fo r m e d a n d e v o lv e d in to q u a s a r s ­ fin d in g h ig h - z S M B H s w ith L IS A ( a n d th e ir c o u n te r p a r ts )

·

Assembly of proto-galaxies: large-scale gas in-fall
­ c a n w e d e te c t d iffu s e L y m a n / B a lm e r e m is s io n ? ­ is c o o lin g r a d ia tio n d e te c ta b le ?


A s s e m b ly o f p r o t o - g a la x ie s : s p a t ia lly e x t e n d e d g a s in f a ll ?
log( cooling rate / erg s-1 cm3 ) ~ Rv

ir

s R log( Temperature / K )

vir

Rv ~ 10

ir

Birnboim & Dekel (2003); Maller & Bullock (2004)


C a n W e D e t e c t t h e C o o lin g R a d ia t io n ?
1. How does cooling halo look like?
"cooling flow" - extended Ly "blob" JWST limiting line flux at 3 < z < 8: mostly Ly emission: flux spread over Rvir: (Haiman, Spaans & Quataert 2000)

F

1 0 - 16 - 1 0 - 17 e r g /s /c m 2

v c ir c 1 5 0 k m / s vir ~ Rvir /dA(z) ~ 5-10"

2. How many halos can we hope to detect ?
b lin d s e a r c h in R = 5 f ilte r ( n a r r o w f ilte r c a n g o d e e p e r ) ~ 1 h a lo p e r J W S T f ie ld a t z = 7 ~ 1 0 h a lo s p e r f ie ld a t z = 3

3. What if a bright quasar turns on in a collapsing halo?
10-100 times brighter "fuzz" ! c o n s t r a in s g a la x y f o r m a t io n
(Haiman & Rees 2001)


L y T r a n s f e r B a s ic s
Challenge: interpretation of spatially resolved Ly emission
Photons undergo random walk in space+frequency (Neufeld 1991)





M o d e r a t e o p t ic a l d e p t h : p h o t o n e s c a p e s in w in g in s in g le f lig h t .

E x t r e m e o p t ic a l d e p t h : p h o t o n e s c a p e s in m u lt is t e p " e x c u r s io n " .


S p e c t r u m E m e r g in g f r o m C o lla p s in g S p h e r e
Dijkstra, Haiman & Spaans (2006a,b)

650 km/s Red

-1300 km/s Blue · Collapsing spherical toy model with Monte Carlo radiative transfer · Ly radiation emerges mainly blue-shifted · IGM opacity makes it hard to detect at high z /D


D ia g n o s t ic o f G a s In f a ll: B r ig h t n e s s P r o f ile
shallow v(r) Surface brightness profile steep v(r)

radius (arcsec) · Bluer photons come preferentially from central regions · Surface brightness profiles flat (log. slope of -0.5) · Scattering vs. Intrinsic effect distinguished using H


Conclusions
· · · · ·

First individual stars detectable via SN / GRB remnants Global feedback likely regulates SFR (WMAP evidence) Multiple ways to characterize feedback: e.g. JWST SNe Metal enrichment (PopIIIPopII) by He line (or PISN) Global metal enrichment hard to map out - OI pumping? Rapid SMBH growth in Tvir>104K halos: n(H2), n(HD) key BH growth probed by GWs from LISA (EM counterparts?) Diffuse Ly emission could probe high-z galaxy assembly

· ·

·