Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/institute/itsd/information/streaming/archive/Astrophysics2020/DennisEbbets111307Hi_supporting/DennisEbbets.pdf
Дата изменения: Tue Sep 25 16:26:37 2012
Дата индексирования: Wed Feb 6 05:02:46 2013
Кодировка:

Поисковые слова: propulsion
Technologies for Astrophysics Missions in 2020
Dennis Ebbets Ball Aerospace & Technologies Corp. STScI Astrophysics 2020 November 13, 2007


Ou t l i n e o f T a l k
· · · · · · · · Large Focal Plane Arrays Cryo systems for cool optics and FPAs Large optics in small fairings LaserCom for high data rates Flash Lidar Multiple spacecraft operations Robotic servicing in space Small landers for solar system studies


Large Focal Plane Arrays - Kepler
· FOV 100 deg2 · 42 1K x 2K CCDs · Curved Schmidt focal surface · S/N ~105, 20ppm p h o t o me t r y · Jitter 3 milli-pixels (9 mas 3) ­ 4 CCD guiders on FPA


Cryo for cold optics & detectors
Stored Cryogens 1.2K ­ 150K Spitzer CTA sfHe 1.2K Telescope + SI ye a r s Cryo-radiators 85K ­ 150K Ralph 95K Instrument M a n y ye a r s

Mechanical coolers 4K ­ 65K Tuned for FPA temp Long life Next generation coolers Hybrids, optical Long life, small , light weight No vibration, no EMI


Large telescopes in small fairings
· JWST pioneers segmented and deployable optics. · Does the technology have to apply only to very large telescopes?
Technologies exist for segmentation stow and deployment alignment phasing Could we imagine 2m or larger instruments in Pegasus-class LV?


LaserCom ­ optical communications links for high bandwidth
Transformational Communications Architecture National space asset that includes NASA (somewhat analogous to DSN and TDRSS) 2.5 Gbps downlink possible LEO to ground Satellite to satellite LEO to GEO backbone Deep space to earth Enables data-rich instruments Save & downlink all raw data Minimize on-board processing Windowing, compression etc.


Flash LIDAR, LADAR
· · · · · · · Pulsed laser, 1.06, 1.57µm 30Hz InGaAs APD 2D array Intensity + time of flight 20 km range 2 cm accuracy Applications
­ ­ ­ ­ ­ ­ ­ Rendezvous & docking Proximity operations Autonomous surface navigation Object recognition Hazard avoidance Terrain mapping Lunar surface, asteroids, NEOs, comets


Multiple spacecraft operations - OE
· Autonomous rendezvous
­ Formation flying ­ Capture with robotic arm ­ Soft dock

· Prox ops
­ Optical & IR sensors ­ RF communications

· Robotic Servicing
­ Fluid (fuel) transfer ­ Battery ORU swap

· Standardized component interfaces exist · Autonomous, robotic capabilities have been demonstrated

DARPA Boeing Ba l l NGST MD A others


Small surface landers (in concept development stage)
TELECOM ANTENNA EQUIPMENT STACK

· Suitable for NEOs, comets, asteroids, small moons, etc. · Soccer ball size · Free-fall from rendezvous spacecraft, s u r v iv e la n d in g · Host a variety of instrument packages · Lifetime days with batteries only

ASPECT CAMERA APERTURE 6-PL) CRATERING CHARGE S/A PETAL (DEPLOYED) 3-PL

PRESSURANT TANK (3-PL) PETAL DEPLOYMENT ACTUATOR (3-PL)

x
ASP BASE ASSY

Y

Z


We all want to get the most and best science return for the budgets available
· Technologies exist, or can be matured easily, to enable or enhance astrophysics missions. · Missions that are physically small and less costly can use enhancing technologies to achieve impressive performance. (fine pointing, larger aperture, long-life cryo) · Larger missions can be enabled by technologies that overcome barriers. (large FPA, high data rates, robotic servicing, in-space assembly)