Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.stsci.edu/~inr/thisweek1/2008/thisweek028.html
Дата изменения: Tue Jan 29 22:55:15 2008
Дата индексирования: Sun Apr 13 23:41:43 2008
Кодировка:
HST this week: 028



This week on HST


HST Programs: January 28 - February 3, 2008


HST will undertake an extensive test of 1-gyro operations between January 29 and 31

Program Number Principal Investigator Program Title Links
10862 John Clarke, Boston University Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year Abstract
11002 Peter Eisenhardt, Jet Propulsion Laboratory A Census of LIRGs in Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey Abstract
11079 Luciana Bianchi, The Johns Hopkins University Treasury Imaging of Star Forming Regions in the Local Group: Complementing the GALEX and NOAO Surveys Abstract
11080 Daniela Calzetti, University of Massachusetts Exploring the Scaling Laws of Star Formation Abstract
11083 Patrick Cote, Dominion Astrophysical Observatory The Structure, Formation and Evolution of Galactic Cores and Nuclei Abstract
11103 Harald Ebeling, University of Hawaii A Snapshot Survey of The Most Massive Clusters of Galaxies Abstract
11107 Timothy M. Heckman, The Johns Hopkins University Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy Formation in the Early Universe Abstract
11122 Bruce Balick, University of Washington Expanding PNe: Distances and Hydro Models Abstract
11142 Lin Yan, California Institute of Technology Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3 Abstract
11153 Sangeeta Malhotra, Arizona State University The Physical Nature and Age of Lyman Alpha Galaxies Abstract
11173 Arlin Crotts, Columbia University in the City of New York Completing an Accurate Map of M31 Microlensing Abstract
11195 Arjun Dey, National Optical Astronomy Observatories Morphologies of the Most Extreme High-Redshift Mid-IR-luminous Galaxies II: The `Bump' Sources Abstract
11198 Anthony H. Gonzalez, University of Florida Pure Parallel Imaging in the NDWFS Bootes Field Abstract
11209 Stephen E. Zepf, Michigan State University Determining the Structural Parameters of the First Globular Cluster Found to Host an Black-Hole X-ray Binary Abstract
11210 George Fritz Benedict, University of Texas at Austin The Architecture of Exoplanetary Systems Abstract
11211 George Fritz Benedict, University of Texas at Austin An Astrometric Calibration of Population II Distance Indicators Abstract
11212 Douglas R. Gies, Georgia State University Research Foundation Filling the Period Gap for Massive Binaries Abstract
11234 Roger Romani, Stanford University A Brief Revisit of the Crab Abstract
11236 Harry Teplitz, California Institute of Technology Did Rare, Large Escape-Fraction Galaxies Reionize the Universe? Abstract
11289 Jean-Paul Kneib, Laboratoire d'Astronomie Spatiale SL2S: The Strong Lensing Legacy Survey Abstract
11339 Andreas Zezas, Smithsonian Institution Astrophysical Observatory A deep observation of NGC4261: understanding its unique X-ray source population, gas morphology, and jet properties Abstract

Some selected highlights

GO 10862: Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year

Hubble ultraviolet image of auroral activity near Jupiter's north magnetic pole 2007 has been designated the International Heliophysical Year, and HST will be playing a key part in the associated scientific activities by participating in a detailed investigation of auroral activity in jupiter and Saturn. Planetary aurorae are stimulated by the influx of charged particles from the Sun, which travel along magnetic field lines and funnel into the atmosphere near the magnetic poles. Aurorae therefore require that a planet has both a substantial atmosphere and a magnetic field. They are a common phenomenon on Earth, sometimes visible at magnetic latitudes more than 40 degrees from the pole, and have also been seen on Jupiter, Saturn, Uranus and Neptune. Jovian auroral activity is also affected by the Galilean satellites, which generate electric currents that can produce bright auroral spots (see figure), and, in some cases, have their own auroral storms. HST is using the ACS Solar Blind Channel to monitor activity on the two largest gas giants. The initial campaign, starting in early January, focused on Saturn while it was at opposition. In February, the New Horizons spacecraft flew by Jupiter, with closest approach on February 28th, and used the strong gravitational field to propel it on its way to Pluto. During the fly-by, New Horizons carried out out a number of experiments ( see this link ) while HST monitored the large-scale behaviour. Jupiter was also surveyed while it was at opposition in June 2007. The present set of observations target Saturn as it passes through opposition.

GO 11079: Treasury Imaging of Star Forming Regions in the Local Group: Complementing the GALEX and NOAO Surveys

The star forming region, N11, in the Small Magellanic Cloud Star formation is a complex process that takes place on many scales, from diffuse, low-level activity within dispersed clouds like the nearby Taurus association, through massive star forming regions, like Orion and 30 Doradus, to intense starbursts within galactic nucle and mergers. The aim of the present proposal is to use WFPC2 to survey a representative sample of active star-forming regions in local Group galaxies. In particular, the observations will cover a wide range of OB associations in the two nearest large spirals, the Andromeda galaxy, M31, and the Triangulum system, M33. Multicolour, high-resolution images, taken at passbands from the ultraviolet (F170W) to far-red (F814W) will allow H-R diagrams to be constructed, probing the distribution of ages and metallicities, and setting constraints on variations in the underlying initial mass function(s). In the coming week, observations are scheduled of the OB association OB157 in M31.

GO 11142: Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3

NICMOS image of the nearby luminous IR galaxy, Arp 299 Luminous infrared galaxies (LIRGs) have total luminosities that exceed 1011.4 LSun, with most of the energy emitted at wavelengths longward of 10 microns. Many (perhaps most) of these galaxies are interacting or merging disk galaxies, with the excess infrared luminosity generated by warm dust associated with the extensive star formation regions. Many systems also exhibit an active nucleus, and may be in the process of evolving towards an S0 or elliptical merger remnant. The present program is targeting systems with redshifts in the range 0.3 < z < 2.7, combining imaging at near-infrared (NICMOS on HST) and mid-infrared (MIPS on Spitzer) wavelengths. All of the systems already have Spitzer mid-infrared spectra, allowing not only an accurate characterisation of the over all flux distribution, and a \ determination of the total luminosity, but also providing insight into the galaxian dust content and chemical evolution.

GO 11210: The Architecture of Exoplanetary Systems

Artist's impression of a young planetary system Immanuel Kant is generally credited with first proposing that the planets in the Solar System coalesced from a flat, rotating disk formed by the Solar Nebula. Direct confirmation of that process only came in the early 1990s, when millimetre-wave interferometers were able to detect molecular gas in Keplerian rotation around a handful of nearby young stars. Since then, there have been numerous other observations, including Hubble's images of proplyds (protoplanetary disks) in the Orion Cluster, and Hubble and Spitzer observations of edge-on disks in other young stars. One of the clear selling points of the Solar Nebula disk model is that it appears to offer a natural path to forming planets with coplanar orbits, matching (most of) our observations of the Solar System. On the other hand, as our knowledge of exoplanetary systems has accumulated over the last decade, it has become clear that dynamical interactions may play a very important role in the evolution of these systems. In particular, disk/planet interactions are generally regarded as responsible for the inward migration of gas giants to form hot Jupiters in <3 day period orbits. Planet-planet interactions could lead to significant changes in orbital inclination. Radial velocity planet searches are uncovering more and more multi-planet systems. This program focuses the high precision of HST's astrometric detectors, the Fine Guidance Sensors, on four of those systems. The aim is to complement the existing radial velocity measurements with sub-milliarcsecond precision astrometry, allowing determination of the true orbital paths - specifically, the relative inclination - of the low-mass objects in these systems.

Past weeks:
page by Neill Reid, updated 28/1/2008