Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.stsci.edu/~wms/EMILI.pdf
Äàòà èçìåíåíèÿ: Wed May 6 23:26:53 2009
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 21:02:12 2012
Êîäèðîâêà: Windows-1251
The Astrophysical Journal Supplement Series, 149: 157-187, 2003 November
# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

E

INTRODUCING EMILI: COMPUTER-AIDED EMISSION LINE IDENTIFICATION Brian Sharpee
1

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

Robert Williams
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

Jack A. Baldwin
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

and Peter A. M. van Hoof
APS Division, Physics Department, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland Received 2003 May 21; accepted 2003 June 30

ABSTRACT The identification of spectral lines can be a tedious process requiring the interrogation of large spectroscopic databases, but it does lend itself to software algorithms that can determine the characteristics of candidate line identifications. We present here criteria used for the identification of lines and a logic developed for a line identification software package called EMILI, which uses the v2.04 Atomic Line List as the basic line database. EMILI considers all possible database transitions within the wavelength uncertainties for observed optical emission lines and computes an approximate intensity for each candidate line. It searches for other multiplet members that are expected to be seen with each candidate line, and rank-orders all of the tentative line identifications for each observed line based on a set of criteria. When applied to the spectra of the Orion Nebula and the planetary nebula IC 418, EMILI's recommended line IDs agree well with those of previous traditional manual line assignments. The existence of a semiautomated procedure should give impetus to the study of very high signal-to-noise spectra, enabling the identification of previously unidentified spectral lines to be handled with ease and consistency. Subject headings: line: identification -- methods: data analysis -- planetary nebulae: individual (IC 418) On-line material: machine-readable table

1. LINE IDENTIFICATION IN RICH EMISSION-LINE SPECTRA

Correct identification of spectral lines is fundamental to all spectroscopic analyses. For lines commonly observed in astronomical spectra, a century of study has resulted in agreement on those transitions that give rise to the stronger lines observed at visible wavelengths. However, there is still uncertainty about the proper identification of many lines, and this problem is even more severe in other wavelength regions. As spectra achieve fainter detection limits, the increasing number of transitions observed leads to a larger fraction of uncertain identifications. The effort involved in making correct line identifications for the large numbers of lines detected in high signal-to-noise (S/N) spectra can be daunting, especially since identifications must be made on the basis of overall astrophysical consistency, causing correct line identifications to be mutually interdependent. This problem has been studied in the past for stellar absorption spectra, and techniques have been developed for distinguishing between chance coincidences and true identifications (Hartoog, Cowley, & Cowley 1973; Cowley & Adelman 1990). Line identification is often problematic for emission-line objects because, unlike absorption lines, which are usually formed near conditions of thermodynamic equilibrium,
1 Present address: SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025.

emission lines are formed under conditions where coincidental resonances and unusual excitation mechanisms cause isolated individual transitions to have strengths that deviate from their equilibrium values by many orders of magnitude. The difficulty in making correct identifications for the large numbers of faint lines observed in emission spectra has acted as a disincentive to obtain the very high signalto-noise spectra that are necessary for their detection. However, deep high-resolution spectra of both H ii regions (Esteban et al. 1998, 1999; Baldwin et al. 2000) and planetary nebulae (Liu et al. 1995, 2000) are now becoming routinely available. Valuable information exists in the detection of previously unobserved faint ionic species (Pequignot & Baluteau 1994), so it is important to confront the challenge of line identifications in an efficient and systematic way. The usual approach to identifying emission lines in these high-quality spectra has been to start with the line identifications available in the literature for the spectra of similar objects. After that, it is necessary to manually work through multiplet tables and other line lists to try to arrive at identifications that make physical sense in terms of wavelength agreement, line intensities, and the presence or absence of other transitions within the same multiplet or from the same ion. This procedure, which we will refer to as the `` traditional '' approach, is both tedious and prone to being unsystematic. One technique that is now being tried is to construct synthetic spectra of the object under study and fit them to 157


158

SHARPEE ET AL.

Vol. 149

the observed spectrum (Walsh et al. 2001), similar to welldeveloped methods for analyzing absorption-line spectra. This technique has many strengths, including a rigorous treatment of blended features and flexibility in dealing with the wavelength uncertainties of the spectral database(s). There is no doubt that this procedure should figure prominently in efforts to identify spectral lines. In this paper we employ a different approach in which we describe a semiautomated technique for identifying emission lines. The centerpiece is a computer program called EMILI (Emission Line Identifier). It automatically applies the same logic that is used in the traditional manual identification of spectral lines, working from a list of measured lines and a database of known transitions, and trying to find identifications based on wavelength agreement and the relative computed intensities of putative IDs, and on the presence of other confirming lines from the same multiplet or ion. We have developed EMILI in the context of analyzing high S/N echelle spectra of planetary nebulae that can typically contain 500-1000 emission lines, some down to an intensity level 105 times fainter than H . Our interest is in measuring chemical abundances from the faint lines of elements heavier than H and He. We have found that these spectra include large numbers of emission lines for which atomic parameters such as collision strengths and transition probabilities are not accurately known, but we realize the importance of including these lines in the analysis so that we can establish which ions are represented in the spectrum. EMILI is therefore designed in the spirit of using rough, order-of-magnitude estimates of atomic parameters. We believe that this is far better than ignoring such lines when in fact they are seen in large numbers in the observed spectra. Since EMILI's goal is simply to give possible identifications for lines, only a very crude model of the ionized nebula is needed. EMILI works from an input list of the wavelengths and intensities of the many hundreds of observed emission lines, and for each line develops a short output list of suggested identifications, rank-ordered in a preliminary way according to their plausibility. The astronomer then reviews the output list and chooses the best identification, based on physical insight. Eventually, after we have obtained sufficient experience with EMILI for different types of objects and have incorporated additional criteria by which correct line identifications can be discerned, the situation will evolve to one in which line IDs can be assigned automatically without the necessity of insight. EMILI is most beneficial in being applied to spectra which reveal large numbers of lines not normally seen in emission spectra. Since the identifications of virtually all of the stronger lines in most astronomical objects have long been known, this occurs for (1) unusual types of objects and (2) high S/N spectra for which large numbers of faint lines are detected.
2. PRELIMINARY DATA REDUCTION STEPS

standard IRAF and specialized FORTRAN programs to extract one-dimensional spectra, binned along the slit, from the two-dimensional images that come from the spectrograph. The flux calibration is determined by observing several standard stars through a wide slit. The observational uncertainties are assessed from the quality of the fits to the wavelength calibration and standard star spectra, by comparing with previously published results for the same object, and by comparing overlapping parts of the observed spectrum that come either from adjacent echelle orders or from different grating setups. In our 9 km sÀ1 FWHM spectra, the wavelength accuracy is typically 1 km sÀ1 and the line flux accuracy is 10%-20% for all but the very weakest lines. The next step is to detect and measure the emission lines contained in these extracted spectra, down to as faint a level as possible. The specification of what constitutes an emission line and what its characteristics are is a critical part of line identification. It is very helpful if the object is spatially resolved and a two-dimensional spectrum is available to aid in distinguishing real lines from artifacts, the latter of which contaminate the object spectrum and are problematical at low signal-to-noise levels. We use the rdgen algorithm, which is part of the vpfit software package of Carswell et al.2 The rdgen program takes a calibrated spectrum and passes a window along in wavelength to determine the flux and S/N at each wavelength. The probability that a particular feature is an actual emission line is then determined from criteria related to the local flux relative to a fitted continuum level and the flux profile, e.g., line width. The flux, width, S/N, wavelength and its uncertainty are determined for each line, and this information is then used to compile an observed line list that serves as the basis for the identification procedure. The major benefit of using rdgen is that it finds a complete set of emission lines down to a consistent S/N limit, so that we can assess the significance of the failure to find emission lines that in principle should be present at some intensity level. However, we caution that EMILI in its present form does not make use of the S/N for measured lines or for the upper limits of unobserved lines.

3. THE EMILI CODE

As stated above, the input to EMILI is a long list of observed wavelengths and intensities of emission lines. Before using EMILI, these must be measured in some way from calibrated, co-added spectra. Our technique and level of accuracy for reducing deep echelle spectra are described by Baldwin et al. (2000) and in a forthcoming companion to the present paper (B. Sharpee, J. A. Baldwin, & R. Williams 2003, in preparation). Basically, we use a combination of

EMILI is a stand-alone FORTRAN code that runs in 5-10 minutes on any UNIX, LINUX, or Windows computer that has a suitable FORTRAN compiler. It is publicly available over the Web3 with a primer and has the following logical flow. For each line in a list of unidentified observed lines submitted to EMILI, a transition database is queried for all transitions within the immediate wavelength vicinity. A separate list of preidentified `` signature lines '' from the same spectrum is used to establish kinematic and ionization models of the observed object. EMILI calculates a predicted template flux for all candidate emission lines considered in the line list based upon these models and upon the characteristics of each transition. For each candidate transition in the database EMILI searches the line list to identify other transitions from the same multiplet. EMILI then ranks each
2 R. F. Carswell, J. K. Webb, A. J. Cooke, & M. J. Irwin. 2001, VPFIT Manual, http://www.ast.cam.ac.uk/~rfc/vpfit.html. 3 B. Sharpee, R. E. Williams, J. A. Baldwin, & P. van Hoof. 2003, EMILI Code and Manual, http://www.pa.msu.edu/astro/software/ emili/.


No. 1, 2003

INTRODUCING EMILI

159

candidate ID for an observed feature according to wavelength agreement, strongest relative predicted flux, and the numbers of multiplet members detected, and it presents the results to the user for final ID determination. In the following sections we specify in more detail the algorithms and general approach used in EMILI. 3.1. Input File of Observed Lines EMILI requires an ASCII input file containing the measured (1) wavelength, (2) 1 wavelength uncertainty due to measurement error, (3) intensity relative to a fiducial line such as H , (4) line width (FWHM), and (5) signal-to-noise relative to the adjacent continuum. In our case the output file from rdgen, after repeat measurements have been averaged together and night-sky lines and obviously spurious lines (due to cosmic ray hits, etc.) removed, serves as the input file for EMILI. 3.2. Spectroscopic Database A second major input to EMILI is a database of atomic transitions that are to be used as candidate IDs for observed emission lines. Recent compilations of large electronic databases of transitions are what now makes it practical to use computers to suggest line identifications using the same logic that has been employed in the traditional identification of lines. Computer-aided identification is especially valuable in facilitating a comparison of possible identifications for a given line with the putative identifications for other lines. The key to the identification procedure is the database of transitions used in the search process. Fortunately, several extensive databases have been developed in recent years that are accessible electronically and that are continually being augmented as new data are made available. One of the most authoritative of these is the NIST Spectroscopic Database,4 which consists largely of transitions that have been observed in laboratory measurements. The NIST transitions information is generally quite reliable, although incomplete. Some lines that are observable in astrophysical spectra have been added, most notably forbidden transitions, but still many transitions of ions do not appear because confirming data are considered to be lacking by NIST standards. The incompleteness of databases, especially proper wavelengths, is a problem for line identification for which there is no alternative. Incomplete information will always limit the viability of making line identifications by any technique. Other line lists exist, and one of the most complete and inclusive of these for UV/optical/IR wavelengths is the v2.04 Atomic Line List compiled by van Hoof.5 This list uses a very different approach in its construction. It is based on observed energy levels of ions rather than observed transitions. This set of levels is supplemented with theoretical predictions and Ritz extrapolations where it is meaningful to do so. The actual line list is constructed by a computer program that imposes a carefully chosen set of selection rules to determine which levels have either allowed, intercombination, or forbidden transitions connecting them. The wavelengths of the lines, including an estimate for the uncertainty, are calculated from the straight difference of the level energies (Ritz wavelengths). This procedure allows
See http://www.physics.nist.gov/cgi-bin/AtData/main_asd. P. A. M. van Hoof. 1999, Atomic Line List v2.04, http://www.pa.uky.edu/~peter/atomic/.
5 4

the line list to be far more complete since the only requirement is that the upper and lower level have been observed, which is less restrictive than the requirement that the line itself has been observed. This is especially important in the infrared where very few laboratory experiments have been undertaken. One drawback of this approach is that observed transitions without a proper spectroscopic identification cannot be included in the line list. However, in the long run this situation will remedy itself once these lines are identified and an updated term analysis becomes available. Numerous spectroscopic databases exist, and it is preferable to interrogate line lists that are as complete as reasonably possible because a successful identification logic will reject specious transitions. As is done in traditional studies to identify spectral lines, multiple sources that list valid atomic and molecular transitions should be utilized when considering putative line identifications in astronomical spectra. However, for the initial development of EMILI we have confined the present study to the use of only one database, the v2.04 Atomic Line List, because of the different formats used in the electronic databases, which would require separate interrogation schemes. We eventually intend to extend the capabilities of the software to interrogate multiple line lists. 3.3. Signature Lines Many emission-line objects have a kinematical structure that segregates lines from different ionization stages in velocity. Additionally, the level of ionization can vary greatly from object to object, affecting the relative intensities of lines from different ions. Since wavelength agreement and predicted intensity are important criteria for making identifications, we define a set of signature lines spanning a range of ionization stages whose IDs are reasonably secure, and we use these lines to establish radial velocity corrections to determine the zero-velocity, or laboratory, wavelength for each observed line and to find an approximate ionization distribution for the object that is used to predict template fluxes for candidate line IDs. This information is then used with generic cross sections and spontaneous transition coefficients to compute a rough template flux for every putative line ID that is considered from the transition database. The signature lines are identified manually by traditional procedures at the beginning of the process. 3.4. Identification Criteria Although there are clear criteria by which a possible line identification can be rejected, there are no criteria by which a line identification can be guaranteed to be correct. Even a line such as H has at times been ascribed to a feature that was later shown to actually be due primarily to He ii 8-4. So, astrophysical consistency and reasonableness are important considerations when assigning identifications, which mitigates against unexpected IDs, and final consensus is often achieved only after a body of data has been gathered for a large group of similar objects. For weak lines from ions with few other lines present or detectable, some doubt may persist about the correctness of an ID. The criteria we have used in making emission-line identifications are (1) wavelength agreement, (2) the relative intensities of the candidate transitions, as determined from an approximate calculation using generic cross sections, and (3) the detection of other lines from the same multiplet that


160

SHARPEE ET AL.

Vol. 149

are expected to be present with the candidate line. Based on the extent to which each candidate line satisfies the above criteria a numerical value is assigned to that transition, and a relative ranking of all reasonable IDs from the database is arrived at for each observed line. Line IDs are made on the basis of this ranking. 3.5. Velocity Shifts and Ionization Basic information about the spectrum that is necessary for normal line identification procedures is obtained from the `` signature '' lines that can be among the stronger of those observed in emission spectra. These lines, which span a wide range in ionization, are searched for and identified manually before the software is applied to the spectrum. The signature lines are used to determine the velocity shift of the spectrum being studied, including differences in velocity between lines of different levels of ionization, and an approximate distribution in ionization of the emitting ions which is used to calculate expected line intensities, i.e., template fluxes, of candidate lines. For most objects H and He are the dominant sources of continuum opacity, and therefore we specify levels of ionization according to the ionization potentials of these elements. We arbitrarily establish five different levels of ionization, from very low to very high, by defining the discrete bins that are specified in Table 1. Listed for each ionization bin are selected lines from ions belonging to that bin, i.e., the signature lines. The observed intensities of the signature lines are proportional to the fractional abundances of their parent ions, which pertain to the ionization level of that bin, and their intensities are used to determine the general ionization of the spectrum. The fractional abundances xk of ions in each energy bin are determined from the intensities of the signature lines for each bin as follows. Bin 1 represents those ions having ionization potentials less than that of hydrogen, and although the intensities of lines such as Mg i], [S i], [C i], and Ca ii depend upon the heavy element abundance and kinetic temperature, we determine x1 independent of these parameters in the following manner. Let F1 be the flux of the strongest of the signature emission lines for Bin 1. Then, 8 > 10À3 ; when F1 =FH < 10À4 ; < x1 ? 10À2 ; when F1 =FH ? 10À4 10À2 ; ð 1Þ > : À1 À2 : 10 ; when F1 =FH > 10 The ionization correction factors for moderately ionized species are determined from the relative strengths of the He i lines compared with H , which depend on an assumed
TABLE 1 Signature Lines for Ionization Bins Energy Range (eV) 0-13.6 13.6-24.7 24.7-54.5 54.5-100.0 >100.0

helium abundance (default is solar) through the relation from recombination theory that x3 =x2 ? 0:7YF
5876

=FH ? 2:0YF

4471

=F

H

;

ð 2Þ

where Y is the He/H abundance by number. The fractional ionization of more highly ionized ions is obtained from the intensity of He ii 4686 relative to the He i lines through the relations x4 =x3 ? 0:04F
4686

=F

4471

? 0:11F

4686

=F

5876

:

ð 3Þ

Finally, the ionization correction factors for the very highest ionization levels (I:P: > 100 eV) are determined from the intensities of lines such as [Ne V], [Fe vii], [Fe X], and [Ar X] via the relation x5 ? 10
À3

þ F5 =F

H

;

ð 4Þ

up to a maximum value of x5 ? 0:3, where F5 is the flux of the brightest of the signature lines for Bin 5 (see Table 1). The above relations for the xk , together with the condition P that xk ? 1 when summed over all of the ionization bins, specify the ionization level of the spectrum. In cases where no signature lines are observed for a particular ionization bin, EMILI sets a minimum value of xk ? 10À3 . Once the general ionization distribution for the spectrum is determined from the above relations, the relative ion abundance for specific elements is arrived at in the following manner. Designate the lower and higher ionization energy limits for each bin k ? 1 5 by EkÀ1 and Ek , and the fractional abundance of ions associated with that bin as xk . Designate the ionization potential of ion i and that of its next lower stage of ionization as i and iÀ1 . When an ion i and its next lower stage of ionization fall within the same energy bin, i.e., when EkÀ1 iÀ1 < i Ek , set xi ? xk . However, when two consecutive ionization stages fall into different energy bins, e.g., when EkÀ1 iÀ1 Ek , and Ek i Ekþ1 , EMILI sets xi ? ðxk þ xkþ1 Þ=2. For the special cases of H and He, xðHþ Þ ? x2 ; xðHeþ Þ ? x3 , and xðHeþ2 Þ ? x4 . Although ionization fractions determined this way are only approximate, they are adequate for orderof-magnitude intensity calculations for lines from different ions. 3.6. Template Fluxes One of the obvious criteria for making line IDs, especially useful for distinguishing between transitions that have essentially the same wavelength, is the expected flux of each candidate line ID compared with the intensity of the observed line. The excitation mechanisms and relevant cross sections for each transition are required to compute its expected intensity, and these are not known for the vast majority of lines. However, for purposes of dealing with large numbers of lines, generic cross sections can be used and the excitation processes that are common for most observed lines can be assumed to operate for all levels. These assumptions can be substantially in error for individual transitions, but for the purposes of helping to distinguish between the relative strengths of transitions of different ions such calculations should have some validity in a statistical sense when applied to large numbers of transitions. For nebular conditions, i.e., low-density gas in a dilute radiation field, excitation is normally caused by electron

Bin 1 .................. 2 3 4 5 .................. .................. .................. ..................

Signature Lines Mg i] 4571, Na i 5892, [S i] 7775, [C i] 8727, Ca ii H and K H He i 5876, 4471 He ii 4686 [Fe x] 6375, [Ne v] 3426, [Fe vii] 6087, [Ar x] 5533


No. 1, 2003

INTRODUCING EMILI

161

impact from the ground state and electron recapture from the next higher stage of ionization. Near a strong continuum source absorption by resonance transitions followed by cascading can also produce line emission. Cross sections for each of these processes have been calculated for numerous levels of many ions, and they have dispersions of several orders of magnitude for different levels. Thus, it is easy for the predicted, or template, flux of a transition to be in error by factors of 100 when generic cross sections are used. Nevertheless, if the relative abundances of the different ions are known, the predicted fluxes of two competing candidate transitions of widely different abundance or excitation level still can be a telling criterion for preferring one line over the other as a putative identification for an observed feature. We use a simple approximation to compute the template flux, Ft , of emission lines associated with each and every transition in the database. We consider all emission lines to be excited by both collisional excitation and recombination processes, representing their contributions to the flux of any line from ion i by the expression (Osterbrock 1989), Ft ? Afxi ?expðÀ0:8j Þ=ð1 þ Kj ne Þþ 10À5 xiþ1 ði þ 1Þ1:7 Cj g ; ð 5Þ where A is the element abundance relative to H, xi and xiþ1 are the fractional abundances of the ions i and i þ 1, j is the excitation potential of the upper level of the transition in eV, and ne is the electron density of the gas (cmÀ3). The term with constant Kj accounts for collisional deexcitation of low-lying levels, and the constant Cj is proportional to the transition probability of the line. Both constants take on values that depend on the type of transition, such that for (1) permitted electric dipole transitions, Kj ? 10À14 and Cj ? 1; for (2) electric dipole intercombination, or spin forbidden, transitions, Kj ? 10À9 and Cj ? 10À4 ; and (3) all other types of transitions, e.g., magnetic dipole and electric quadrupole, Kj ? 10À6 and Cj ? 10À7 . Equation (5) predicts an approximate relative flux for any transition under typical nebular conditions. All line intensities so calculated are normalized to the H flux predicted from the same expression and are referred to as the template fluxes of the database lines. 3.7. Associated Multiplet Lines The presence of other lines originating from the same upper level or from within the same multiplet is one of the more useful criteria by which line identifications can be judged. Although multiplets are defined by the coupling scheme appropriate for the ion, except for very leveldependent excitation processes involving resonances one generally expects for a given ion that lines originating from levels of similar excitation potential tend to be present with similar intensities. This is especially true within individual multiplets. Most of the more abundant elements have low atomic number and the stronger optical transitions of many of the ions of these elements tend to obey LS or jK coupling, so the multiplets that are most likely to be present in astronomical spectra can generally be clearly specified. If experience shows that this assumption is too frequently violated, different methods for determining associated transitions may be considered. The current EMILI algorithm will determine for all possible LS coupling transitions in the database other members

of the same multiplet that are expected to be present with intensities similar to that of the primary transition. Since relevant atomic data are not known for the vast majority of transitions, we rely upon general principles. Additionally, all multiplet lines grouped within the instrumental resolution or natural line width are considered to be a single line. Level populations and spontaneous transition rates within a multiplet tend to be larger for those lines originating from upper levels with the highest statistical weights. We determine for every transition those lines within the same multiplet that are expected to be observable at intensities comparable with or greater than its flux. We call these lines within the multiplet the `` associated lines '' of the candidate line (or putative ID), and we arbitrarily define them to be those lines within the multiplet originating from upper levels with J 0 ! Ju À 1 and ending on lower levels J 00 ! Jl À 1, where Ju and Jl are the angular momenta of the upper and lower levels of the line under consideration. This definition may be unnecessarily restrictive, especially in its limitation on the lower levels of the associated transitions, but we wish to err on the side of considering those multiplet members that are most likely to have intensities comparable with the candidate line. The detectability of associated lines is also dependent upon the signal-to-noise of the lines and is affected by chance coincidences and line blends, so the presence or absence of associated lines as a constraint for identification of a line has limitations, but the general concept is an important one to invoke for the validation of line identifications. 3.8. Numerical Identification Index We base all line identifications on the three criteria discussed above: wavelength agreement, strongest computed template flux, and presence/absence of associated lines from the same multiplet. In order to put line identification on a quantitative basis, we establish a numerical identification index (IDI) that assesses the extent to which every putative line ID for an observed line satisfies the criteria. Since the three criteria are independent of each other, separate numerical values are defined for each of the individual component criteria, and the IDI is defined as the sum of the three components. For the present we arbitrarily assign numerical values to how well candidate lines satisfy each of the criteria; however, in the future it might be instructive to weight each component in such a way that the line IDs suggested by the resulting IDI produce the best agreement with previous published work. Of course, there is no guarantee that identifications in previous studies are correct. The IDI which we have instituted for EMILI is defined to be IDI ? W þ F þ M ; ð 6Þ

where W, F, and M are the wavelength, flux, and multiplet components, respectively, of the IDI, and each take on integer values between 0 and 3, with lower scores being better, according to the following conditions.
3.8.1. Wavelength Component

Define 0 to be the wavelength of an observed line corrected for the object radial velocity, and l to be the wavelength of a candidate line from the database corrected for any ionization-dependent velocity shifts deduced from the signature lines. Let 1 be the standard deviation in the


162

SHARPEE ET AL.

Vol. 149

measured wavelength of the observed line. Then, W ? 0 for j0 À 1 j 0:5 , W ? 1, 2, and 3 for j0 À 1 j 1 , 1.5 , and 2, respectively, and W ? 4 for j0 À 1 j > 2 . Uncertainty in the laboratory wavelengths are not taken into account in this determination, although consideration will be given to doing so in the future.
3.8.2. Flux Component

Designate the computed template flux of a candidate line by f1 , and let fb designate the brightest template flux of all candidate lines within 5 in wavelength of the observed line. Then, F ? 0 for that line having the brightest predicted flux if fb > 10f1 for all other candidate lines within that wavelength interval. Otherwise, F ? 1, 2, or 3 for lines having f1 ! 0:1fb , 0:01fb , and 0:001fb , respectively. Thus, the flux component of the IDI takes into consideration comparison of the predicted template fluxes of the candidate lines with each other but not with the observed flux of the line.
3.8.3. Multiplet Component

For each candidate line from the line list designate P as the number of associated multiplet lines, as defined above in x 3.7, for that line. Define D to be the number of associated multiplet lines that appear to be detected, i.e., for which a line is observed at the appropriate wavelength and having a flux within an order of magnitude of the primary candidate line. Then, (i) M ? 0 when P : D ? 1 : 1, or when D ! 2. (ii) M ? 1 when P : D ? 0 : 0 or 2:1. (iii) M ? 2 when P : D ? 1 : 0or ð! 3Þ : 1. And (iv) M ? 3 when P : D ? ð! 2Þ : 0. For every observed feature in the spectrum the master line list is searched for possible IDs within a specified wavelength range, typically Æ5 of the wavelength of the observed feature, and the IDI is determined for each candidate line. Identifications are assigned on the basis of the IDI, with lower values of IDI signifying a higher probability of correct identification.
4. AN EXAMPLE: APPLICATION OF EMILI TO IC 418

We have undertaken a program to obtain highdispersion, high signal-to-noise spectra of a few selected PNe because they are among the best objects to observe for

the detection of faint emission lines. The primary motive has been to identify as many CNONe recombination lines as possible in order to compare the relative intensities of these lines between themselves and with the strong forbidden lines from object to object. Data obtained and reduced for the relatively low-ionization PN IC 418 using the CTIO Blanco 4 m telescope + echelle at a spectral resolution of œ 33,000 over the wavelength range of 3400-9700 A are described in Paper II of this series (B. Sharpee, J. A. Baldwin, & R. Williams 2003, in preparation). We have taken the list of emission lines defined by rdgen as applied to the spectrum in that paper and have applied EMILI to the line list using the procedure that has been outlined in x 3 above, and which is also described on the EMILI Web site. For a line to be considered real we require S=N > 7, with the exception of 23 features in the range 7 > S=N > 3, which were deemed real lines upon inspection of the original two-dimensional spectra images. Line identifications are made on the basis of the IDI defined in equation (6), with the most probable ID taken to be that line among the candidates considered that has the smallest value of the index. In order to present the information used to compute the index for every candidate ID, for each observed feature EMILI lists all reasonable IDs for that line together with the wavelength, predicted flux, and associated multiplet lines for each candidate ID. The output table for EMILI thus consists of a list of every emission line that is observed in the spectrum, as defined by rdgen, together with the possible transitions (and their characteristics) that might be identified with that observed feature. As an illustration of EMILI output and results, we consider the identification of an emission line observed at œ 5536.60 A in the spectrum of IC 418, with the relevant EMILI output for this line listed in Table 2. The data were obtained with the CTIO 4 m echelle in 2001 December at a resolution of 9 km sÀ1 (R ? 33;000), and the relevant wavelength region of that spectrum is shown in Figure 1. œ The measured wavelength of the line is 5536.60 A, which À1 radial velocity of the when corrected for the +68.6 km s object determined from the higher Balmer and Paschen œ lines, corresponds to a rest wavelength of 5535.33 A. Its observed flux relative to H is 4:5  10À5 , and the line has a signal-to-noise ratio of S=N ? 26 and a width (FWHM) of

TABLE 2 Sample EMILI Output A 5535.36 5535.33 +5535.36 +5535.33 +5535.33 +5535.33 +5535.33 5535.28 5535.36 5535.28 5535.28 5535.33 5535.28 5535.33 B 5535.04 5535.169 5535.325 5535.347 5535.353 5535.383 5535.384 5535.378 5535.476 5535.413 5535.418 5535.466$ 5535.455 5535.525$ C P iv Mn ii Ni iii N ii C ii Fe ii] N ii [V ii] Fe iii Fe i] Fe i Ar ii Mg i S ii D 1.30EÀ06 9.40EÀ06 5.40EÀ06 3.10EÀ04 1.10EÀ03 1.60EÀ06 3.10EÀ04 8.20EÀ05 9.90EÀ05 2.50EÀ06 5.60EÀ05 1.00EÀ05 3.50EÀ05 4.90EÀ05 E 17.4 8.6 1.9 À1 À1.4 À3 À3.1 À5.1 À6.2 À7 À7.3 À7.5 À9.3 À10.7 F 2/0 5/1 5/0 2/2 1/0 7/0 8/1 7/0 8/0 5/0 5/0 0/0 0/0 0/0 G * 9 7D 1A 3B 7D 4C 7D 8 9 8 7D 7D 7D H I J K

5764.28 5530.242

8.7 À2.9 5551.922 À1.3

5526.234

À3.1

œ Notes.--Observed line: 5536.60 A. Flux: 4.5EÀ05. S/N: 26.40. FWHM: 16.9.


No. 1, 2003

INTRODUCING EMILI

163

Fig. 1.--Portion of our echelle spectrum of IC 418, showing the emission œ line at 5535 A that is used as an example in Table 2.

17 km sÀ1. These measured line attributes appear in the note at the bottom of Table 2. In Columns labeled `` A '' through `` K '' appear all lines listed in the v2.04 Atomic Line List that have wavelengths within 5 (about 20 km sÀ1, or œ 0.37 A) of the observed line and which have template fluxes within a factor of 1000 of the brightest computed template flux for the entire group of candidate lines. Column `` A '' lists the observed wavelength (air) of the unidentified lines corrected for any velocity shifts appropriate for the emitting ion of each candidate ID, according to the kinematical model. Transitions whose wavelengths are denoted by a plus sign are within 1.5 wavelength error from the measured line wavelength. The laboratory wavelength (in air) is given in column `` B,'' and the emitting ion is listed in column `` C.'' Columns `` D '' and `` E '' give the predicted template flux for each candidate line and the difference between its wavelength and that of the measured line in units of velocity (km sÀ1). Column `` F '' lists the number of associated multiplet lines that should be observable compared with the number observed. In column `` G '' the IDI is given for each candidate line, and the capital alphabet letter following the numerical IDI gives the ranking of the line, with A representing the most likely ID, i.e., the lowest IDI value. Finally, in columns `` H,'' `` I,'' `` J,'' and `` K '' appear the wavelengths of the strongest associated multiplet lines that are possibly observed together with their differences in wavelength (in km sÀ1) from those of the observed lines. Our experience shows that when the associated lines are truly that, and not just coincidences, their differences in wavelength from the observed lines are virtually identical to the difference between the primary line and its measured line wavelength. Looking in detail at the EMILI results for the observed œ IC 418 5536.60 A line, a secure identification with N ii œ is indicated, although an ID with C ii 5535.35 5535.35 A œ A is also a possibility. The N ii line has a slightly (insignificantly) better wavelength agreement with the observed line than the C ii transition, although the C ii line is predicted to be slightly brighter than the N ii line using the generic cross sections and abundances. Both putative IDs have computed template fluxes that are higher than that of the observed line. The key to the identification devolves to the associated multiplet lines for the two transitions: both possible lines in the N ii multiplet are apparently present, whereas the one

possible associated line for the C ii line is not observed. The former lines could conceivably be due to chance coincidences with unrelated transitions; however, the wavelength differences between the N ii associated line wavelengths and those of the observed lines are very similar: À1.0 km sÀ1 for the primary line versus À2.9 and À1.3 km sÀ1 for its associated multiplet lines, which argues against chance coincidences. The lack of detection of the C ii associated multiplet line could be due to a number of factors having nothing to do with its true intensity, including its location at the very edge of an echelle order or its superposition on a strong night sky line or scattered ghost feature. Consequently, its nondetection may be explainable. These doubts can be addressed by visual inspection of both the original twodimensional spectral image and the final reduced onedimensional spectrum. This final manual check of the EMILI results is an important component of proper line identification when there are several competing transitions that are credible IDs. œ It is worth noting that the particular N ii 5535.35 A transition discussed above is a quartet line whose upper level is an autoionizing state that lies above the N+ ionizing continuum. It is therefore almost certainly excited by dielectronic recombination of N+2. Of particular significance is the fact that all three possible stabilizing transitions from the autoionizing state are observed in IC 418, making their identification quite secure. We have applied EMILI to the full, final reduced high S/N echelle spectrum of IC 418 obtained at CTIO. We employed an updated version of the v2.04 Atomic Line List that includes higher level lines of He i, and a standard set of parameters in computing template fluxes for putative line IDs, i.e., solar abundances, and ne ? 104 cmÀ3 and Te ? 104 K. In making final IDs for this nebula, we have used the EMILI results as the initial basis for considering final line assignments; however, we have not blindly accepted the EMILI recommendation for each line. Rather, we have studied the entire spectrum and have considered the entire list of IDs collectively, using our judgment as to what lines we believe constitute the most reasonable identifications, and these are presented for the entire spectrum in Table 3. In most cases we have accepted the EMILI top-ranked ID as the final ID. However, for some lines we have selected one of the IDs whose IDI was not the smallest of the candidate group, as evidenced by the ranking given in column (6) of Table 3. For almost every line our final ID was one that was ranked by EMILI as one of the four most probable lines, and we have listed all the final identifications together with the observed lines and their measured wavelengths and reddening corrected fluxes in the table. When the lowest value of IDI for an assigned line is higher than IDI ! 5, we consider the ID to be uncertain and therefore tag that ID with a colon. When the most likely putative ID has IDI ! 8, we place a question mark after the ID, believing that the ID does not have a solid basis and that the spectral feature may be spurious or the line list does not contain the correct transition for that feature. This line list should constitute one of the most detailed emission spectra of any PNe and can serve as an archetype of low-ionization spectra, similar to the spectrum of the Orion Nebula presented by Baldwin et al. (2000). EMILI found solid identifications for 624 of the 807 observed IC 418 emission lines, and possible identifications for an additional 72 lines. Table 3 notes for each line those


TABLE 3 EMILI Line Indentifications for IC 418

0 œ (A) (1) S/N (5) 37.6 99990.0 127.5 7.3 11.5 7.2 8.1 161.6 21.9 7.2 7.3 293.5 11.0 156.7 7.5 25.9 7.7 10.2 13.5 19.0 32.5 44.9 54.9 96.0 102.1 126.5 152.8 193.0 266.4 267.6 353.9 364.1 456.3 557.6 565.0 486.9 464.0 256.7 307.2 289.2 436.3 3Po 1s.2p 3Po 1s.2p 3Po 1s.2p 3D 1s.12d 3D 1s.11d 3D 1s.10d IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) Ju (13) 0.1365 0.2002 0.2340 0.0065 0.0182 0.0047 0.0135 0.3351 0.0252 0.0027 0.0070 0.5577 0.0059 0.5069 0.0141 0.0331 0.0067 0.0140 0.0148 0.0176 0.0300 0.0352 0.0586 0.0986 0.1212 0.1823 0.2433 0.2956 0.3470 0.3975 0.4610 0.5158 0.6514 0.6930 0.7684 0.8542 1.0173 1.0602 1.2159 1.4841 1.6649

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3) V (km sÀ1) (9)

I ðÞ=I ðH Þ (I ðH Þ ? 100) (4)

Multi. (14)

3512.511 3530.499 3554.417 3560.616 3562.932 3574.775

....... ....... ....... ....... ....... .......

22.9 24.6 23.1 20.3 20.7 13.5

0.1026 0.1509 0.1771 0.0049 0.0138 0.0036

3579.402....... 3587.284....... 3590.815.......

23.4 24.4 25.3

0.0103 0.2549 0.0192

3601.327 3606.862 3613.634 3616.798 3634.250 3649.872 3652.003 3654.256 3654.681

....... ....... ....... ....... ....... ....... ....... ....... .......

14.8 24.6 21.7 20.7 25.7 32.6 24.0 9.3 14.3

0.0021 0.0053 0.4259 0.0045 0.3883 0.0109 0.0254 0.0052 0.0107

164

3655.113.......

11.1

0.0114

3655.588.......

11.6

0.0135

3656.104 3656.667 3657.276 3657.936 3658.647 3659.428 3660.286 3661.230 3662.262 3663.406 3664.683 3666.098 3669.463 3671.475 3673.757 3676.361 3679.349 3682.806 3686.830 3691.556 3697.156

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

12.5 13.5 16.2 18.1 19.9 23.5 26.3 27.9 29.1 30.7 31.3 31.4 31.4 31.4 32.3 32.8 33.2 34.3 32.5 32.6 33.5

0.0231 0.0270 0.0451 0.0758 0.0932 0.1402 0.1871 0.2274 0.2669 0.3058 0.3548 0.3970 0.5017 0.5339 0.5922 0.6586 0.7847 0.8182 0.9390 1.1469 1.2877

2A 3A 3A .. . 4A 6B 8D .. . 3A 5A 7C .. . .. . 2A 3A 4A .. . 3A .. . 2A .. . 2A .. . 2A .. . 3A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 3A 2A 2A 3A 3A 2A 3A 2A 2A ... 3Po 1s.2p 2D 2s2.2p2.(3P).3d 3P 2s.2p2.(4P).3d ... 3Po 1s.2p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p ... ... 1S 1s.2s 2Do 3s2.3p2.(3P).4p 3Po 1s.2p ... 3Po 1s.2p 2 2* 3F 2s.2p2.(4P).3d 2 2* 2 2* 3F 2s.2p2.(4P).3d 2 2* 3F 2s.2p2.(4P).3d 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* 2 2* ... 3S 1s.10s 2Po 2s2.2p2.(3P).5p 3Do 2s.2p2.(4P).5p ... 3D 1s.9d 4Po 2s.2p.(3Po).4s 4Po 2s.2p.(3Po).4s ... ... 1Po 1s.5p 2P 3s2.3p2.(3P).4d 3D 1s.8d ... 3S 1s.8s 42 42* 3Do 2s.2p2.(2D).3p 41 41* 40 40* 3Do 2s.2p2.(2D).3p 39 39* 3Do 2s.2p2.(2D).3p 38 38* 37 37* 36 36* 35 35* 34 34* 33 33* 32 32* 31 31* 30 30* 29 29* 28 28* 27 27* 25 25* 24 24* 23 23* 22 22* 21 21* 20 20* 19 19* 18 18* 17 17*

He i He i He i ... He i O ii N ii ... He i C ii C ii ... ... He i S ii He i ... He i Hi N ii Hi Hi N ii Hi N ii Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi

3512.505 3530.482 3554.389 ... 3562.969 3574.845: 3574.900 ? ... 3587.253 3590.757 3590.876: ... ... 3613.642 3616.767 3634.231 ... 3651.981 3654.266 3654.670 ? 3654.676 3655.117 3655.050 ? 3655.593 3655.500 ? 3656.106 3656.663 3657.267 3657.923 3658.639 3659.421 3660.277 3661.218 3662.256 3663.404 3664.676 3666.095 3669.464 3671.475 3673.758 3676.362 3679.352 3682.808 3686.830 3691.554 3697.152

À0.5 À1.5 À2.4 .. . 3.1 5.9 10.5 .. . À2.6 À4.8 5.1 .. . .. . 0.6 À2.6 À1.6 .. . À1.8 0.8 À0.9 À0.4 0.3 À5.2 0.4 À7.2 0.2 À0.3 À0.7 À1.1 À0.7 À0.6 À0.7 À1.0 À0.5 À0.2 À0.6 À0.2 0.1 0.0 0.1 0.1 0.2 0.2 0.0 À0.2 À0.3 2.0 2.0 1.0 ... 2.0 1.5 2.0 ... 2.0 1.5 2.5 ... ... 0.0 2.5 2.0 ... 2.0 **** 4.0 **** **** 3.0 **** 1.0 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

**** **** **** ... 1.0 1.5 2.0 ... **** 0.5 1.5 ... ... 1.0 1.5 3.0 ... 1.0 **** 3.0 **** **** 2.0 **** 1.0 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

0/0 1/0 2/0 ... 1/0 2/0 2/0 ... 1/0 7/0 5/0 ... ... 0/0 1/0 2/0 ... 1/0 ... 2/1 ... 0/0 ... 0/0 ... 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 455.8 224.3 726.1 439.6 8543.0 4280.0 614.9 35.1 1262.0 37.2 38.3 1284.0 9.4 8.6 71.6 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 1.9143 0.7483 2.2926 3.3082 123.7908 52.3426 3.0689 0.0593 4.0585 0.0782 0.0304 4.8591 0.0050 0.0045 0.0374

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

3703.852 3705.017 3711.968 3721.895

....... ....... ....... .......

31.8 22.8 32.0 36.3

1.4822 0.5795 1.7773 2.5687

3726.035 3728.785 3734.364 3735.506

....... ....... ....... .......

41.9 43.2 31.0 38.9

96.1832 40.6870 2.3876 0.0461

3A 4A 3A 6B 5A 0A 1A 3A 8C

3750.149 3756.065 3768.782 3770.631

....... ....... ....... .......

31.6 37.4 23.2 31.8

3.1656 0.0610 0.0238 3.8028

3777.164....... 3780.171....... 3784.851.......

41.5 33.1 22.5

0.0039 0.0035 0.0294

165
0.0681 0.0030 9.4921 0.0734 0.0126 0.0274 0.0231 0.0058 0.0098 0.1013 46.1 11.2 29.9 188.1 33.6 56.4 105.7 8.3 2711.0 98.5 0.0424 110.2

3795.635 3797.897 3801.360 3802.720 3805.736 3811.854 3813.451 3817.159 3819.628 3821.849 3829.745 3831.645

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

30.0 31.5 55.5 37.6 20.3 9.0 26.5 25.2 23.9 26.8 21.3 20.6

0.0019 4.4534 0.0055 0.0057 0.0331 0.0015 0.0026 0.0027 0.8853 0.0038 0.0184 0.0237

0.0025 5.6643 0.0070 0.0073 0.0421 0.0019 0.0033 0.0035 1.1218 0.0049 0.0232 0.0300

6.6 1187.0 10.7 11.9 99.5 9.9 7.6 7.7 525.4 18.3 34.2 58.1

3833.550 3834.140 3835.387 3838.349

....... ....... ....... .......

20.0 25.2 32.0 25.5

0.0539 0.0024 7.5117 0.0581

3842.183....... 3848.265.......

19.1 35.0

0.0100 0.0217

3850.392 3853.755 3855.089 3856.054

....... ....... ....... .......

45.2 36.3 29.6 45.6

0.0183 0.0046 0.0078 0.0805

3862.619.......

40.6

0.0337

3A 4A 3A 3A 7B 5A .. . 3A 9B .. . 2A .. . 8 3A 6C .. . .. . 4A .. . 3A 9 7C 3A .. . 2A 7D 5A 2A 3A 7 2A 5A 2A 1A 2B 6C 1A

Hi He i Hi [S iii] Hi [O ii] [O ii] Hi O ii O ii Hi He i He i Hi He i Ne ii ... He i O ii ... Hi ... S ii He i S ii ... ... He i ... N ii S ii C ii He i ... Hi S iii N ii N ii Mg ii Mg ii Mg ii Si ii N ii Si ii N ii O ii Si ii

3703.852 3704.996 3711.971 3721.630: 3721.938: 3726.032 3728.815 3734.368 3735.722 ? 3735.786 ? 3750.151 3756.115 3768.821 3770.630 3770.750: 3777.134: ... 3784.895 3784.990 ? ... 3797.898 ... 3802.604 ? 3805.777 3811.745: ... ... 3819.603 ... 3829.795 3831.379 ? 3831.726: 3833.584 ... 3835.384 3838.268: 3838.374: 3842.187 3848.212 3848.341: 3850.386 3853.664 3855.096 3856.018 3856.063 3856.134: 3862.596

0.0 À1.7 0.2 À21.4 3.5 À0.2 2.4 0.3 17.3 22.5 0.2 4.0 3.1 À0.1 9.5 À2.4 .. . 3.5 11.0 .. . 0.1 .. . À9.1 3.2 À8.6 .. . .. . À2.0 .. . 3.9 À20.8 6.3 2.7 .. . À0.2 À6.3 1.9 0.3 À4.1 5.9 À0.5 À7.1 0.5 À2.8 0.7 6.2 À1.8

2 2* 3Po 1s.2p 2 2* 3P 3s2.3p2 2 2* 4So 2s2.2p3 4So 2s2.2p3 2 2* 2Po 2s2.2p2.(1D).3p 2Po 2s2.2p2.(1D).3p 2 2* 1Po 1s.2p 1Po 1s.2p 2 2* 1Po 1s.2p 4P 2s2.2p4.(3P).3s ... 1Po 1s.2p 2Po 2s2.2p2.(3P).4p ... 2 2* ... 4Po 3s2.3p2.(3P).4p 1Po 1s.2p 2Po 3s2.3p2.(3P).4p ... ... 3Po 1s.2p ... 3P 2s2.2p.(2Po).3p 2Po 3s2.3p2.(3P).4p 2Po 2s2.4p 1Po 1s.2p ... 2 2* 3Po 3s2.3p.4s 3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p 2D 3d 2D 3d 2D 3d 2D 3s.3p2 3P 2s2.2p.(2Po).3p 2D 3s.3p2 3P 2s2.2p.(2Po).3p 4Do 2s2.2p2.(3P).3p 2D 3s.3p2

16 16* 3D 1s.7d 15 15* 1S 3s2.3p2 14 14* 2Do 2s2.2p3 2Do 2s2.2p3 13 13* 2D 2s2.2p2.(1D).4s 2D 2s2.2p2.(1D).4s 12 12* 1D 1s.14d 1D 1s.13d 11 11* 1S 1s.13s 4Po 2s2.2p4.(3P).3p ... 1D 1s.12d 2D 2s2.2p2.(1D).4d ... 10 10* ... 4P 3s2.3p2.(3P).4d 1D 1s.11d 2D 3s2.3p2.(3P).4d ... ... 3D 1s.6d ... 3Po 2s2.2p.(2Po).4s 2D 3s2.3p2.(3P).4d 2D 2s.2p.(3Po).3p 1D 1s.10d ... 9 9* 3P 3s2.3p.4p 3Po 2s2.2p.(2Po).4s 3Po 2s2.2p.(2Po).4s 2Po 5p 2Po 5p 2Po 5p 2Po 3s2.(1S).4p 3Po 2s2.2p.(2Po).4s 2Po 3s2.(1S).4p 3Po 2s2.2p.(2Po).4s 4D 2s2.2p2.(3P).3d 2Po 3s2.(1S).4p

**** 2.0 **** 1.0 **** 1.5 1.5 **** 1.5 1.5 **** 1.0 1.0 **** 1.0 0.5 ... 1.0 1.5 ... **** ... 1.5 1.0 0.5 ... ... 2.0 ... 1.0 1.5 1.5 1.0 ... **** 2.0 2.0 0.0 2.5 1.5 1.5 1.5 1.0 2.5 2.0 1.5 1.5

**** 3.0 **** 0.0 **** 1.5 2.5 **** 1.5 2.5 **** 2.0 2.0 **** 0.0 1.5 ... 2.0 2.5 ... **** ... 0.5 2.0 1.5 ... ... 2.0 ... 2.0 2.5 2.5 2.0 ... **** 2.0 2.0 1.0 1.5 1.5 0.5 1.5 0.0 1.5 1.0 0.5 0.5

0/0 2/0 0/0 0/0 0/0 1/1 1/1 0/0 2/0 2/0 0/0 0/0 0/0 0/0 0/0 6/0 ... 0/0 2/0 ... 0/0 ... 6/0 0/0 2/0 ... ... 4/0 ... 4/2 2/0 2/0 0/0 ... 0/0 3/1 3/1 5/3 2/1 2/0 2/1 2/0 5/3 2/2 4/3 9/1 2/2


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 183.6 805.3 183.0 8.6 12.1 3A IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0851 3.0916 0.0760 0.0018 0.0069

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

3867.486 3868.745 3871.781 3873.477 3876.477

....... ....... ....... ....... .......

21.7 13.6 21.2 15.2 43.7

0.0677 2.4614 0.0606 0.0014 0.0055

3882.178....... 0.0027 0.0014 16.0294 0.0034 0.0027 0.0025 0.0040 0.0055 0.0080 0.0035 0.0019 0.1068 0.2052 0.0043 0.0036 0.1258 0.0028 0.0147 0.0059 0.0014 1.0336 0.9751 16.8492 0.0026 0.0020 0.0034 0.0048 0.0008 0.0089 0.0032 0.1860 0.0041 0.0012 8.2 367.9 15.3 9.4 3A 6A .. . .. . .. . .. . 8 1A 7 1A .. . 7D 5.8 43.8 9.6 7.7 509.9 229.6 2775.0 9.6 10.7 9.7 9.9 7.0 19.9 15.8 13.5 7.6 226.4 372.8 14.6 7.9 247.6 99990.0 8.0 13.4 7.4 13.7 10.3 8.8 3433.0 4A 6A 5A

13.7

0.0050

0.0063

27.4

3A 7 5D 8 8 3A

3883.110....... 3884.008....... 3888.939.......

23.7 16.9 66.4

0.0022 0.0011 12.8101

3891.462 3892.335 3892.769 3895.096 3896.201

....... ....... ....... ....... .......

25.5 14.0 31.0 32.9 27.7

0.0027 0.0021 0.0020 0.0032 0.0044

166

3899.208 3907.470 3909.251 3918.930 3920.640 3923.200 3924.007 3926.544

....... ....... ....... ....... ....... ....... ....... .......

44.9 21.9 9.6 18.7 18.3 36.9 36.9 21.8

0.0064 0.0028 0.0015 0.0858 0.1650 0.0035 0.0029 0.1013

3929.127 3935.956 3962.513 3963.797 3964.727 3967.457 3970.074 3977.342 3979.851 3986.459 3988.516 3992.088 3998.781

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

18.5 22.3 44.8 17.1 22.1 14.2 31.9 25.5 24.8 30.2 25.8 33.4 32.7

0.0023 0.0119 0.0048 0.0012 0.8384 0.7914 13.6820 0.0021 0.0016 0.0027 0.0039 0.0007 0.0073

6A 5B .. . 8 6A 6A 7 3A .. . 4A 3A .. . .. . 3A 3A 5A 1A .. . .. . 2A

4004.939 4009.256 4015.931 4018.473

....... ....... ....... .......

33.7 21.7 20.1 25.1

0.0026 0.1522 0.0034 0.0009

He i [Ne iii] He i Fe i C ii C ii C ii O ii O ii O ii C ii Hi He i Ar ii: S ii: ... Fe i O ii: Fe i S iii O ii ... C ii C ii ... ... He i O ii C ii He i ... ... He i [Ne iii] Hi C ii S ii ... ... Ar ii N iii S ii Ni iii He i ... Ni iii

3867.472 3869.060 3871.830 3873.594 ? 3876.392 3876.653 3876.186 3882.194 3882.446 3883.137 3883.853: 3889.049 3888.605 3891.401 ? 3892.288 ... 3895.232 ? 3896.303: 3896.349: 3899.028: 3907.455 ... 3918.967 3920.682 ... ... 3926.544 3926.581 3928.970: 3935.945 ... ... 3964.729 3967.790 3970.072 3977.250: 3979.824 ... ... 3992.088 ? 3998.630 ? 3998.759 4005.180 ? 4009.256 ... 4018.760 ?

À1.1 24.4 3.8 9.0 À6.6 13.6 À22.5 1.2 À20.7 2.1 À12.0 8.5 À25.8 À4.7 À3.6 .. . 10.5 7.9 11.4 À13.8 À1.2 .. . 2.8 3.2 .. . .. . 0.0 2.8 À12.0 À0.8 .. . .. . 0.1 25.2 À0.1 À6.9 À2.0 .. . .. . 0.0 À11.3 À1.6 18.0 0.0 .. . 21.4 3Po 1s.2p 3P 2s2.2p4 1Po 1s.2p z5Po 3d6.(5D).4s.4p.(3Po) 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4Fo 2s.2p.(3Po).3d 2 2* 3S 1s.2s 4D 3s2.3p4.(3P).3d 4Po 3s2.3p2.(3P).4p ... z5Po 3d6.(5D).4s.4p.(3Po) 4Do 2s2.2p2.(3P).3p z5Po 3d6.(5D).4s.4p.(3Po) 3Po 3s2.3p.4s 4Do 2s2.2p2.(3P).3p ... 2Po 2s2.3p 2Po 2s2.3p ... ... 1Po 1s.2p 4Do 2s2.2p2.(3P).3p 2Fo 2s2.4f 1Po 1s.2p ... ... 1S 1s.2s 3P 2s2.2p4 2 2* 4Do 2s.2p.(3Po).3d 4So 3s2.3p2.(3P).4p ... ... 4D 3s2.3p4.(3P).3d 2D 2s2.4d 4So 3s2.3p2.(3P).4p 3F 3d7.(4F).4d 1Po 1s.2p ... 3F 3d7.(4F).4d 3S 1s.6s 1D 2s2.2p4 1D 1s.9d 5D 3d6.4s.(6D).6s 4G 2s.2p.(3Po).4f 4G 2s.2p.(3Po).4f 4G 2s.2p.(3Po).4f 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 4G 2s.2p.(3Po).4f 8 8* 3Po 1s.3p 4Do 3s2.3p4.(3P).4p 4P 3s2.3p2.(3P).4d ... 5D 3d6.4s.(6D).6s 4P 2s2.2p2.(3P).3d 5D 3d6.4s.(6D).6s 3P 3s2.3p.4p 4P 2s2.2p2.(3P).3d ... 2S 2s2.4s 2S 2s2.4s ... ... 1D 1s.8d 4P 2s2.2p2.(3P).3d 2G 2s2.14g 1S 1s.8s ... ... 1Po 1s.4p 1D 2s2.2p4 7 7* 4D 2s.2p.(3Po).4f 4P 3s2.3p2.(3P).4d ... ... 4Do 3s2.3p4.(3P).4p 2Fo 2s2.5f 4P 3s2.3p2.(3P).4d 3Do 3d6.(5D).4s.4p 1D 1s.7d ... 3Do 3d6.(5D).4s.4p 2.0 2.0 1.0 3.0 3.5 2.5 4.5 3.5 1.5 3.5 4.5 **** **** 0.5 2.5 ... 2.0 2.5 1.0 2.0 2.5 ... 0.5 1.5 ... ... 1.0 3.5 **** 1.0 ... ... 0.0 1.0 **** 2.5 1.5 ... ... 1.5 1.5 1.5 4.0 1.0 ... 3.0

1.0 2.0 2.0 3.0 4.5 3.5 5.5 3.5 1.5 2.5 3.5 **** **** 0.5 2.5 ... 2.0 1.5 0.0 1.0 2.5 ... 0.5 0.5 ... ... 2.0 2.5 **** 0.0 ... ... 1.0 2.0 **** 2.5 0.5 ... ... 2.5 2.5 1.5 3.0 2.0 ... 2.0

1/0 1/1 0/0 4/1 5/0 8/0 2/0 3/1 7/0 4/1 5/1 0/0 ... 9/1 3/0 ... 7/1 5/0 8/2 4/0 4/0 ... 1/1 1/1 ... ... 0/0 2/2 ... 0/0 ... ... 0/0 1/1 0/0 6/0 ... ... ... ... 2/0 2/2 2/1 0/0 ... 5/2


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 79.7 412.4 99999.0 12.2 12.6 16.6 30.2 8.7 10.3 23.4 6.2 900.8 99999.0 99999.0 100.3 19.2 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0215 2.0978 0.0340 0.0055 0.0098 0.0071 0.0121 0.0041 0.0043 0.0055 0.0036 1.7873 0.0204 0.0199 0.0327 0.0102

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4023.993.......

18.8

0.0176

4026.207.......

22.9

1.7237

4027.209 4028.221 4032.779 4035.165

....... ....... ....... .......

31.7 12.6 51.5 37.9

0.0280 0.0045 0.0080 0.0059

4041.303.......

24.9

0.0100

4043.460 4058.287 4065.230 4067.329 4068.668 4069.626 4069.888 4072.149 4074.505

....... ....... ....... ....... ....... ....... ....... ....... .......

24.3 16.8 25.5 22.2 48.8 18.9 13.0 15.2 35.9

0.0033 0.0035 0.0045 0.0030 1.4822 0.0169 0.0165 0.0272 0.0085

167
0.0442 0.7653 0.0056 0.0025 0.0053 0.0049 0.0047 0.0076 0.0045 0.0114 0.0032 0.0049 0.0042 0.0028 0.0115 24.8041 0.0160 0.0046 0.0055 5729.0 18.1 10.4 7.8 15.6 42.8 10.5 22.5 22.5 24.5 37.9 16.8 11.0 17.9 352.0 23.0 10.6 13.3 99999.0

4075.889.......

17.0

0.0368

4076.374 4078.808 4079.643 4082.319

....... ....... ....... .......

46.7 16.3 36.0 36.0

0.6358 0.0047 0.0021 0.0044

4083.874.......

14.3

0.0040

4084.670 4085.101 4087.146 4089.290 4092.920 4093.921

....... ....... ....... ....... ....... .......

20.5 16.7 14.5 13.3 10.8 39.5

0.0039 0.0064 0.0037 0.0095 0.0027 0.0041

4095.648.......

19.4

0.0035

4096.513....... 4097.265.......

11.8 14.9

0.0024 0.0096

4101.739 4104.747 4104.996 4108.454

....... ....... ....... .......

31.5 55.1 14.2 33.4

20.7242 0.0134 0.0038 0.0046

7C 1A 8 4B 3A .. . 3A 3A 4B 2A 3B 4A 4A 4A .. . 0A 1A 1A 1A 5B 3A 5B 2A 5C 1A 2A 4A 9 4A 3A 3A * 1A 2A 2A 1A 6C 5A 7 2A 5A 2A 2A 2A 1A 1A .. .

O ii He i N ii He i Fe i ... S ii N ii O ii O ii N ii N ii N ii Fe iii ... [S ii] O ii O ii O ii N iii C ii C ii O ii C ii [S ii] O ii [Fe iii] Fe i N ii [Fe ii] O ii Fe i O ii O ii O ii O ii Fe iii N iii N iii O ii [Fe iii] O ii O ii Hi O ii O ii ...

4023.868: 4023.980 4026.078 ? 4026.186 4027.098 ? ... 4032.767 4035.081 4035.073 4041.278 4041.310 4043.532 4058.162 4065.253 ? ... 4068.600 4069.623 4069.882 4072.153 4074.460: 4074.481 4074.544: 4075.862 4075.940: 4076.349 4078.842 4079.700 4082.107 ? 4082.271 4083.781 4083.899 4084.492 ? 4085.112 4087.153 4089.288 4092.929 4093.645: 4093.680: 4095.340: 4095.644 4096.610: 4097.225 4097.257 4101.734 4104.724 4104.990 ...

À9.3 À1.0 À9.6 À1.6 À8.3 .. . À0.9 À6.2 À6.8 À1.9 0.5 5.3 À9.2 1.7 .. . À5.0 À0.2 À0.4 0.3 À3.3 À1.8 2.9 À2.0 3.8 À1.8 2.5 4.2 À15.6 À3.5 À6.8 1.8 À13.1 0.8 0.5 À0.2 0.6 À20.2 À17.7 À22.6 À0.3 7.1 À2.9 À0.6 À0.4 À1.7 À0.4 .. . 2F 2s2.2p2.(1D).3d 1Po 1s.2p 3Fo 2s2.2p.(2Po).3d 3Po 1s.2p y5Fo 3d7.(4F).4p ... 4So 3s2.3p2.(3P).4p 3Fo 2s2.2p.(2Po).3d 4F 2s2.2p2.(3P).3d 4F 2s2.2p2.(3P).3d 3Fo 2s2.2p.(2Po).3d 3Fo 2s2.2p.(2Po).3d 3Fo 2s2.2p.(2Po).3d 5Ho 3d5.(4G).5p ... 4So 3s2.3p3 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4P 2p2.(3P).3d 4Do 2s.2p.(3Po).3d 4Do 2s.2p.(3Po).3d 4Do 2s2.2p2.(3P).3p 4Do 2s.2p.(3Po).3d 4So 3s2.3p3 4Do 2s2.2p2.(3P).3p 5D 3d6 z5Fo 3d6.(5D).4s.4p.(3Po) 3Fo 2s2.2p.(2Po).3d a4F 3d7 4F 2s2.2p2.(3P).3d z5Fo 3d6.(5D).4s.4p.(3Po) 4Do 2s2.2p2.(3P).3p 4F 2s2.2p2.(3P).3d 4F 2s2.2p2.(3P).3d 4Do 2s2.2p2.(3P).3p 5Go 3d5.(4G).5p 2Do 2s.2p.(1Po).3d 2Do 2s.2p.(1Po).3d 4F 2s2.2p2.(3P).3d 5D 3d6 4Po 2s2.2p2.(3P).3p 4F 2s2.2p2.(3P).3d 2 2* 4Po 2s2.2p2.(3P).3p 4Po 2s2.2p2.(3P).3p ... 2[2]o 2s2.2p2.(1D).4f.D 1S 1s.7s 2[9/2] 2s2.2p.(2Po<3/2>).4f.G 3D 1s.5d g5G 3d6.4s.(4D).4d ... 4P 3s2.3p2.(3P).4d 2[7/2] 2s2.2p.(2Po<3/2>).4f.G 2[3]o 2s2.2p2.(3P).4f.F 2[2]o 2s2.2p2.(3P).4f.F 2[9/2] 2s2.2p.(2Po<3/2>).4f.G 2[7/2] 2s2.2p.(2Po<3/2>).4f.G 2[7/2] 2s2.2p.(2Po<3/2>).4f.G 5G 3d5.(4G).6s ... 2Po 3s2.3p3 4F 2s2.2p2.(3P).3d 4F 2s2.2p2.(3P).3d 4F 2s2.2p2.(3P).3d 4Po 2s.2p.(3Po).8d 4F 2s.2p.(3Po).4f 4F 2s.2p.(3Po).4f 4F 2s2.2p2.(3P).3d 4F 2s.2p.(3Po).4f 2Po 3s2.3p3 4F 2s2.2p2.(3P).3d 3G 3d6 g5D 3d6.4s.(4D).5s 2[7/2] 2s2.2p.(2Po<1/2>).4f.F b2H 3d6.(3H).4s 2[4]o 2s2.2p2.(3P).4f.G g5D 3d6.4s.(4D).5s 4F 2s2.2p2.(3P).3d 2[3]o 2s2.2p2.(3P).4f.G 2[5]o 2s2.2p2.(3P).4f.G 4F 2s2.2p2.(3P).3d 5G 3d5.(4G).5d 2D 2s.2p.(3Po).6p 2D 2s.2p.(3Po).6p 2[3]o 2s2.2p2.(3P).4f.G 3G 3d6 4D 2s2.2p2.(3P).3d 2[4]o 2s2.2p2.(3P).4f.G 6 6* 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d ... 3.5 1.0 3.0 2.0 5.0 ... 1.5 2.0 2.5 2.5 4.0 3.0 4.0 4.0 ... 1.5 0.5 1.5 2.5 1.5 0.5 1.5 3.5 2.5 1.5 1.5 3.0 2.0 3.0 4.5 2.5 5.0 2.5 1.5 4.5 3.5 3.0 1.5 2.5 2.5 2.0 0.5 3.5 **** 1.5 1.5 ...

2.5 0.0 4.0 2.0 4.0 ... 2.5 3.0 2.5 2.5 5.0 4.0 3.0 5.0 ... 1.5 1.5 2.5 3.5 **** 1.5 2.5 4.5 2.5 0.5 1.5 4.0 2.0 4.0 4.5 3.5 4.0 2.5 2.5 5.5 3.5 2.0 1.5 1.5 3.5 3.0 1.5 4.5 **** 2.5 1.5 ...

... 0/0 ... 4/0 5/2 ... 1/1 ... ... ... ... ... ... 8/1 ... 1/1 8/6 8/6 5/4 2/0 8/1 8/0 2/2 7/1 1/1 8/5 7/1 */1 ... 3/0 ... 2/0 7/5 ... ... 4/3 */4 3/2 3/1 ... 8/1 7/4 ... 0/0 5/4 7/3 ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 19.2 16.2 61.2 99999.0 351.8 99999.0 7.8 7.1 92.4 34.8 11.2 226.1 17.3 75.7 48.5 1 5 1 2 A B A A IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0075 0.0082 0.0219 0.0068 0.2062 0.0166 0.0019 0.0162 0.0370 0.0083 0.0028 0.3140 0.0059 0.0184 0.0159

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4110.766 4113.028 4119.214 4120.312

....... ....... ....... .......

15.0 53.6 17.3 17.4

0.0063 0.0068 0.0184 0.0057

4120.829 4121.434 4123.658 4128.569 4131.757 4132.789 4139.999 4143.758

....... ....... ....... ....... ....... ....... ....... .......

22.8 17.5 15.5 18.6 19.8 11.5 32.8 23.1

0.1730 0.0140 0.0016 0.0136 0.0311 0.0070 0.0024 0.2649

4146.047.......

19.9

0.0050

4153.287....... 4156.328.......

15.1 30.3

0.0156 0.0134

168
0.0064 0.0081 0.0034 0.0011 0.0124 0.0024 0.0056 0.0061 0.0081 0.0015 0.0030 0.0069 0.0031 0.0074 0.0043 0.0046 0.5712 13.5 15.9 536.0 9.2 15.8 30.2 18.0 9.8 13.5 20.1 32.8 8.0 13.0 22.9 7.4 8.2 34.0

4161.141....... 4167.285....... 4168.995.......

29.6 31.6 24.3

0.0018 0.0032 0.0393

0.0022 0.0038 0.0463

9.5 10.9 140.0

4176.145 4185.433 4187.368 4188.379 4189.783

....... ....... ....... ....... .......

27.3 16.2 33.6 11.5 21.2

0.0054 0.0069 0.0029 0.0010 0.0106

4192.167 4196.805 4208.038 4211.316 4219.753

....... ....... ....... ....... .......

48.9 36.1 30.3 24.5 19.9

0.0021 0.0048 0.0053 0.0069 0.0013

4236.926.......

14.3

0.0026

4241.809.......

19.9

0.0060

4246.861....... 4253.919.......

25.6 38.7

0.0027 0.0064

4256.128....... 4259.506....... 4267.161.......

23.5 19.4 38.7

0.0037 0.0040 0.4963

3A 2A .. . 7C 8B 3A .. . 4B 1A 3A 4B 3A 4A 7D .. . .. . 1A 8C 3A 1A 8 .. . 2A 8 8 7D .. . 7C 2A 7 2A 6 4B 3A 5B 2A 2A .. . .. . 8D 5A 8D

O ii Fe i O ii O ii O ii He i O ii ... Fe ii Fe ii O ii ... O ii He i Ne ii O ii O ii N ii O ii ... ... He i O ii N ii O ii Fe ii ... O ii O ii O ii O ii ... [Fe ii] Ne ii Ni iii N ii N ii N ii N ii N ii O ii O ii ... ... C ii C ii C ii

4110.786 4112.912 ? 4119.216 4120.278 4120.547 4120.811 4121.462 ... 4128.748: 4131.870 ? 4132.800 ... 4143.739 4143.759 4146.064 4146.076 4153.298 4156.358 4156.530: ... ... 4168.972 4169.224: 4176.159 4185.439 4187.493 ? ... 4189.788 4189.581 ? 4192.512 ? 4196.698: ... 4211.099: 4219.745 4220.070 ? 4236.927 4237.047: 4241.756 4241.786 4246.706: 4253.894 4253.907 ... ... 4267.001 4267.183 4267.261

1.5 À8.5 0.2 À2.5 17.1 À1.4 2.1 .. . 13.0 8.2 0.8 .. . À1.4 0.1 1.2 2.1 0.8 2.1 14.6 .. . .. . À1.7 16.4 1.0 0.4 9.0 .. . 0.3 À14.5 24.7 À7.6 .. . À15.5 À0.6 22.5 0.1 8.6 À3.8 À1.6 À10.9 À1.8 À0.8 .. . .. . À11.3 1.5 7.0

4Po 2s2.2p2.(3P).3p y5Do 3d7.(4F).4p 4Po 2s2.2p2.(3P).3p 4Po 2s2.2p2.(3P).3p 4Po 2s2.2p2.(3P).3p 3Po 1s.2p 4Po 2s2.2p2.(3P).3p ... b4P 3d6.(3P4).4s z4Ho 3d6.(3H).4p 4Po 2s2.2p2.(3P).3p ... 6P 2s.2p3.(5So).3p 1Po 1s.2p 2P 2s2.2p4.(3P).4s 6P 2s.2p3.(5So).3p 4Po 2s2.2p2.(3P).3p 3Do 2s2.2p.(2Po).3d 4Po 2s2.2p2.(3P).3p ... ... 1Po 1s.2p 4Po 2s2.2p2.(3P).3p 1Do 2s2.2p.(2Po).3d 2Fo 2s2.2p2.(1D).3p z4Ho 3d6.(3H).4p ... 2Fo 2s2.2p2.(1D).3p 2Fo 2s2.2p2.(1D).3p 2Do 2s2.2p2.(1D).3p 2Do 2s2.2p2.(1D).3p ... a4F 3d7 4D 2s2.2p4.(3P).3d 3F 3d7.(4F).4d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 2G 2s2.2p2.(1D).3d 2G 2s2.2p2.(1D).3d ... ... 2D 2s2.3d 2D 2s2.3d 2D 2s2.3d

4D 2s2.2p2.(3P).3d i5D 3d6.4s.(4D).4d 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 3S 1s.5s 4P 2s2.2p2.(3P).3d ... z4Do 3d6.(5D).4p e4G 3d6.(5D).4d 4P 2s2.2p2.(3P).3d ... 6Do 2s.2p3.(5So).3d 1D 1s.6d 2So 2s2.2p4.(3P).5p 6Do 2s.2p3.(5So).3d 4P 2s2.2p2.(3P).3d 2[3/2] 2s2.2p.(2Po<3/2>).4f.D 4P 2s2.2p2.(3P).3d ... ... 1S 1s.6s 4P 2s2.2p2.(3P).3d 2[5/2] 2s2.2p.(2Po<1/2>).4f.F 2G 2s2.2p2.(1D).3d e4G 3d6.(5D).4d ... 2G 2s2.2p2.(1D).3d 2G 2s2.2p2.(1D).3d 2P 2s2.2p2.(1D).3d 2P 2s2.2p2.(1D).3d ... b2H 3d6.(3H).4s 2[4]o 2s2.2p4.(3P<2>).4f 3Do 3d6.(5D).4s.4p 2[5/2] 2s2.2p.(2Po<1/2>).4f.F 2[7/2] 2s2.2p.(2Po<1/2>).4f.F 2[5/2] 2s2.2p.(2Po<1/2>).4f.F 2[7/2] 2s2.2p.(2Po<1/2>).4f.F 2[5/2] 2s2.2p.(2Po<1/2>).4f.F 2[5]o 2s2.2p2.(1D).4f.H 2[5]o 2s2.2p2.(1D).4f.H ... ... 2Fo 2s2.4f 2Fo 2s2.4f 2Fo 2s2.4f

1.5 3.0 2.5 2.5 2.5 2.0 0.5 ... 2.5 4.5 0.5 ... 2.5 1.0 0.5 3.5 1.5 1.0 2.5 ... ... 1.0 2.5 2.0 2.5 4.5 ... 3.5 3.5 2.5 1.5 ... 3.5 3.5 2.0 1.0 2.0 2.0 3.0 3.0 4.5 4.5 ... ... 1.5 2.5 2.5

0.5 3.0 3.5 2.5 1.5 1.0 0.5 ... 1.5 4.5 1.5 ... 3.5 2.0 0.5 4.5 2.5 2.0 1.5 ... ... 0.0 2.5 3.0 3.5 5.5 ... 4.5 3.5 1.5 0.5 ... 5.5 4.5 3.0 2.0 3.0 3.0 4.0 2.0 5.5 4.5 ... ... 2.5 3.5 2.5

7/4 6/1 2/2 4/3 5/1 1/0 6/2 ... 5/0 7/1 6/1 ... 5/1 0/0 1/0 2/0 4/1 ... 4/1 ... ... 0/0 3/1 ... 2/1 5/0 ... 2/1 2/0 2/0 2/0 ... 4/0 ... 4/2 ... ... ... ... ... ... ... ... ... 2/0 2/0 2/0


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 7.1 33.4 23.5 10.7 7.4 9.1 13.4 16.5 99999.0 99999.0 35.2 21.1 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0058 0.0065 0.0079 0.0033 0.0026 0.0019 0.0026 0.0031 0.0055 0.0083 0.0089 0.0059

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4271.882....... 4275.535.......

44.2 13.5

0.0050 0.0056

4276.820.......

44.0

0.0068

4277.481.......

24.9

0.0029

4280.548 4281.246 4282.957 4285.699

....... ....... ....... .......

48.9 20.9 16.1 13.2

0.0022 0.0016 0.0022 0.0027

4287.234....... 4287.551.......

12.1 15.1

0.0048 0.0072

4292.406.......

21.2

0.0078

4294.777.......

27.8

0.0051

169
0.0119 0.0159 0.0086 0.0083 32.5 38.4 45.3 57.8 0.0080 0.0093 0.0171 49.4 11.5 8.2 0.0070 0.0093 0.0037 44.8053 0.0192 0.0052 0.0330 0.0080 77.3 16.5 20.7 8.7 12.2 6397.0 39.6 9.3

4300.454 4303.129 4303.819 4306.069

....... ....... ....... .......

27.4 16.9 14.6 20.1

0.0030 0.0009 0.0058 0.0061

0.0034 0.0010 0.0066 0.0069

7.8 7.9 34.1 20.2

4307.269....... 4317.119.......

19.5 16.4

0.0105 0.0140

4318.581....... 4319.618.......

25.2 13.8

0.0076 0.0073

4321.597....... 4323.326.......

48.3 70.0

0.0070 0.0082

4325.866.......

45.0

0.0151

4329.876 4335.866 4336.830 4340.465 4345.546 4347.990

....... ....... ....... ....... ....... .......

21.4 60.2 11.5 31.6 15.8 26.0

0.0062 0.0082 0.0033 39.6376 0.0170 0.0046

4349.409....... 4351.266.......

18.6 19.2

0.0292 0.0071

5C 5B 2A 6B 4A 3A 3A 4B 3B 2A 2A 5C 7B 5A 7C 6B 6B 2A 6B .. . 4A 2A 7A 7A 3A 1A 8 5A 2A 4B 8C 5A 3B 8 8 4A 4A 6B .. . 1A 3A 1A .. . .. . 0A 5A 9C

Fe i Fe ii] O ii O ii [Fe ii] O ii O ii Fe ii] O ii O ii O ii Fe ii [Fe ii] [Co ii] O ii O ii: C ii O ii O ii ... O ii O ii [Fe ii] O ii O ii O ii C ii C ii O ii [Fe ii] Fe ii C ii [Co ii] C ii O ii Fe i C ii C ii ... O ii Hi O ii O ii O ii O ii O ii O ii

4271.760 ? 4275.492 ? 4275.551 4276.749: 4276.829 4277.426 4277.427 4280.542 ? 4281.313 4282.961 4285.684 4285.716 ? 4287.394: 4287.499 ? 4287.727: 4292.214 ? 4292.250: 4294.782 4294.919: ... 4303.072 4303.823 4305.890: 4305.965: 4307.232 4317.139 4317.265 ? 4318.606: 4319.629 4319.620 ? 4319.680 ? 4321.657 4323.278 ? 4323.106 ? 4325.761 ? 4325.762 ? 4325.833 ? 4329.675: ... 4336.859 4340.464 4345.560 4347.413 ? 4347.217 ? 4349.426 4351.260: 4351.457 ?

À8.5 À3.0 1.1 À5.0 0.7 À3.9 À3.8 À0.4 4.7 0.3 À1.1 1.2 11.2 À3.6 12.3 À13.4 À10.9 0.3 9.9 .. . À4.0 0.3 À12.5 À7.2 À2.6 1.4 10.1 1.7 0.8 0.1 4.3 4.2 À3.4 À15.3 À7.3 À7.2 À2.3 À13.9 .. . 2.0 À0.1 1.0 À39.9 À53.3 1.2 À0.4 13.2 a3F 3d7.(4F).4s z2Po 3d6.(3P4).4p 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d a4F 3d7 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d z2Po 3d6.(3P4).4p 4P 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 2F 2s2.2p2.(3P).3d x4Do 3d6.(3F4).4p a6D 3d6.(5D).4s a3F 3d8 2Po 2s2.2p2.(1D).3p 2F 2s2.2p2.(3P).3d 2Fo 2s2.2p.(3Po).3d 4P 2s2.2p2.(3P).3d 4P 2s2.2p2.(3P).3d ... 2G 2s2.2p2.(1D).3d 4P 2s2.2p2.(3P).3d a4F 3d7 2D 2s2.2p2.(1D).3d 4P 2s2.2p2.(3P).3d 4P 2s2.2p2.(3P).3s 4P 2s.2p.(3Po).3p 4P 2s.2p.(3Po).3p 4P 2s2.2p2.(3P).3s a4F 3d7 x4Do 3d6.(3F4).4p 4P 2s.2p.(3Po).3p a3F 3d8 4P 2s.2p.(3Po).3p 4P 2s2.2p2.(3P).3s a3F 3d7.(4F).4s 4P 2s.2p.(3Po).3p 2D 2s2.4d ... 4P 2s2.2p2.(3P).3s 2 2* 4P 2s2.2p2.(3P).3s 2D 2p2.(1D).3s 2D 2p2.(1D).3s 4P 2s2.2p2.(3P).3s 2D 2s2.2p2.(1D).3s 2D 2s2.2p2.(1D).3s z3Go 3d7.(4F).4p 4P 3d6.(5D).4d 2[4]o 2s2.2p2.(3P).4f.F 2[3]o 2s2.2p2.(3P).4f.F a4G 3d6.(3G).4s 2[3]o 2s2.2p2.(3P).4f.F 2[2]o 2s2.2p2.(3P).4f.F 4P 3d6.(5D).4d 2[2]o 2s2.2p2.(3P).4f.D 2[2]o 2s2.2p2.(3P).4f.F 2[3]o 2s2.2p2.(3P).4f.F e4F 3d6.(5D).4d a6S 3d5.4s2 b3P 3d7.(4P).4s 2D 2s2.2p2.(3P).4d 2[2]o 2s2.2p2.(3P).4f.F 2G 2s2.10g 2[2]o 2s2.2p2.(3P).4f.D 2[2]o 2s2.2p2.(3P).4f.D ... 2[4]o 2s2.2p2.(1D).4f.G 2[3]o 2s2.2p2.(3P).4f.D a4G 3d6.(3G).4s 2[1]o 2s2.2p2.(1D).4f.P 2[2]o 2s2.2p2.(3P).4f.D 4Po 2s2.2p2.(3P).3p 4Po 2s.2p.(3Po).4s 4Po 2s.2p.(3Po).4s 4Po 2s2.2p2.(3P).3p a4G 3d6.(3G).4s e4F 3d6.(5D).4d 4Po 2s.2p.(3Po).4s b3P 3d7.(4P).4s 4Po 2s.2p.(3Po).4s 4Po 2s2.2p2.(3P).3p z3Go 3d7.(4F).4p 4Po 2s.2p.(3Po).4s 2Fo 2s2.9f ... 4Po 2s2.2p2.(3P).3p 5 5* 4Po 2s2.2p2.(3P).3p 2Do 2s2.2p2.(1D).3p 2Do 2s2.2p2.(1D).3p 4Po 2s2.2p2.(3P).3p 2Do 2s2.2p2.(1D).3p 2Do 2s2.2p2.(1D).3p 4.0 0.5 3.5 2.5 3.5 3.5 0.5 1.5 2.5 1.5 2.5 2.5 4.5 3.0 1.5 2.5 **** 1.5 1.5 ... 3.5 2.5 2.5 1.5 0.5 0.5 2.5 0.5 1.5 2.5 2.5 1.5 3.0 0.5 0.5 2.0 2.5 **** ... 1.5 **** 1.5 1.5 2.5 2.5 2.5 1.5

5.0 0.5 4.5 3.5 4.5 2.5 1.5 0.5 2.5 2.5 3.5 2.5 2.5 1.0 1.5 2.5 **** 2.5 1.5 ... **** 3.5 2.5 **** 1.5 1.5 2.5 1.5 2.5 3.5 3.5 1.5 2.0 0.5 0.5 3.0 1.5 **** ... 1.5 **** 0.5 1.5 1.5 2.5 2.5 2.5

2/0 4/1 ... ... 5/1 ... ... 4/1 ... ... ... 7/1 1/0 5/1 2/1 ... ... ... ... ... ... ... 8/0 ... ... 6/5 3/0 6/1 4/4 8/1 5/1 6/1 4/1 6/0 6/0 5/1 4/0 ... ... 6/5 0/0 6/5 ... ... 3/3 3/0 3/0


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 27.9 606.3 53.0 291.3 11.0 291.0 32.0 7.4 15.0 7.7 12.5 99999.0 99999.0 113.7 99999.0 99999.0 92.2 11.1 11.4 11.9 211.5 19.7 9.0 9.2 34.1 29.1 6.5 59.4 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0090 0.9353 0.0136 0.0964 0.0016 0.5462 0.0059 0.0022 0.0045 0.0016 0.0016 0.0027 0.0021 0.0303 0.0016 0.0026 0.0197 0.0032 0.0036 0.0028 0.0792 0.0039 0.0009 0.0010 0.0088 0.0056 0.0017 0.0134

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4359.380.......

42.0

0.0080

4363.191 4366.875 4368.264 4376.580 4387.930 4390.550 4391.963

....... ....... ....... ....... ....... ....... .......

15.6 13.4 54.9 12.6 21.5 47.1 15.8

0.8321 0.0121 0.0858 0.0014 0.4889 0.0053 0.0020

4393.483 4396.586 4411.172 4413.609 4413.942 4414.888 4416.090 4416.515 4416.969 4418.945

....... ....... ....... ....... ....... ....... ....... ....... ....... .......

33.9 20.4 13.3 12.4 10.4 15.0 11.0 17.4 15.5 35.3

0.0041 0.0014 0.0015 0.0025 0.0019 0.0273 0.0015 0.0024 0.0178 0.0029

170
0.0028 0.0025 0.0059 0.0029 0.0041 0.0022 4.4921 0.0026 22.6 12.1 1935.0 5.8 9.9 99999.0 14.3 32.4

4432.692.......

22.1

0.0032

4433.769 4437.552 4447.060 4448.253 4448.825 4452.262

....... ....... ....... ....... ....... .......

23.6 22.0 16.5 12.8 9.5 43.9

0.0025 0.0718 0.0035 0.0008 0.0009 0.0080

4453.475....... 4454.107....... 4457.091.......

16.3 21.5 20.9

0.0051 0.0015 0.0122

4457.725....... 4459.898....... 4465.404.......

26.0 17.2 14.8

0.0026 0.0022 0.0054

4466.390.......

25.1

0.0027

4467.919.......

14.7

0.0038

4469.375.......

13.5

0.0020

4471.499....... 4474.689.......

23.7 20.9

4.1046 0.0024

3A 5B 1A 1A 2A 4A 1A .. . 3A 3A 4A 4A 4A .. . 3A 1A 6A 7B 3A 5C 3A 6B 5A 6 1A 2A 5A 2A 4A 8C 7D 8 3A 6C 6C 6A 6A 1A 8 3A 6D 1A 5B 1A 4B 4A 4A

[Fe ii] O ii [O iii] O ii Oi C ii He i ... Ne ii Ne ii O ii Oi C ii ... [Fe ii] O ii [Fe ii] [Fe ii] O ii O ii Fe ii [Fe ii] N ii N ii He i N ii O ii O ii [Fe ii] O ii Fe ii O ii Ne ii Ne ii Ne ii [Fe ii] N ii O ii N ii O ii O ii O ii Fe ii O ii O ii He i [Fe ii]

4359.333 4359.395: 4363.210 4366.895 4368.193 4376.582 4387.929 ... 4391.991 4391.995 4393.435 4396.560 ? 4411.152 ... 4413.781 4414.898 4416.266: 4416.266: 4416.975 4418.870: 4418.958 ? 4432.447: 4432.735: 4433.475: 4437.554 4447.030 4448.191: 4448.850 4452.098 ? 4452.378 4453.205 ? 4453.966 ? 4457.050 4457.239: 4457.265: 4457.945: 4459.937: 4465.408 4465.529 ? 4466.435 4466.583: 4467.924 4467.931: 4469.378 4469.462 4471.474 4474.904

À3.2 1.0 1.3 1.3 À4.9 0.1 À0.1 .. . 1.9 2.2 À3.3 À1.8 À1.4 .. . À10.9 0.7 12.0 À16.9 0.4 À5.1 0.9 À16.6 2.9 À19.9 0.1 À2.0 À4.2 1.7 À11.1 7.8 À18.2 À9.5 À2.8 10.0 11.7 14.8 2.6 0.3 8.4 3.0 13.0 0.3 0.8 0.2 5.8 À1.7 14.4 a6D 3d6.(5D).4s 2Do 2s2.2p2.(3P).3p 1D 2s2.2p2 4P 2s2.2p2.(3P).3s 3So 2s2.2p3.(4So).3s 4Po 2s.2p.(3Po).3d 1Po 1s.2p ... 4F 2s2.2p4.(3P).3d 4F 2s2.2p4.(3P).3d 2Po 2s2.2p2.(1D).3p 3P 2s2.2p3.(4So).4p 2Do 2s.2p.(3Po).3d ... a6D 3d6.(5D).4s 2P 2s2.2p2.(3P).3s a6D 3d6.(5D).4s a6D 3d6.(5D).4s 2P 2s2.2p2.(3P).3s 2Po 2s2.2p2.(1S).3p y4Go 3d6.(3F4).4p a6D 3d6.(5D).4s 3Po 2s2.2p.(2Po).3d 3Po 2s2.2p.(2Po).3d 1Po 1s.2p 1P 2s2.2p.(2Po).3p 2Fo 2s2.2p2.(1D).3p 2P 2s2.2p2.(1D).3d a6D 3d6.(5D).4s 2P 2s2.2p2.(3P).3s y6Po 3d5.(6S).4s.4p.(3Po) 4P 2s2.2p2.(3P).3d 2D 2s2.2p4.(3P).3d 4P 2s2.2p4.(3P).3d 2D 2s2.2p4.(3P).3d a6D 3d6.(5D).4s 3D 2s2.2p.(2Po).3p 6So 2s.2p3.(5So).3s 3D 2s2.2p.(2Po).3p 2P 2s2.2p2.(3P).3d 2P 2s2.2p2.(3P).3d 6So 2s.2p3.(5So).3s y4Go 3d6.(3F4).4p 6So 2s.2p3.(5So).3s 2P 2s2.2p2.(3P).3d 3Po 1s.2p a6D 3d6.(5D).4s a6S 3d5.4s2 2D 2s2.2p2.(3P).3d 1S 2s2.2p2 4Po 2s2.2p2.(3P).3p 3P 2s2.2p3.(4So).4p 4D 2s.2p.(3Po).4f 1D 1s.5d ... 2[5]o 2s2.2p4.(3P<2>).4f 2[5]o 2s2.2p4.(3P<2>).4f 2P 2s2.2p2.(3P).4d 3Do 2s2.2p3.(2Do).4s 2F 2s.2p.(3Po).4f ... a6S 3d5.4s2 2Do 2s2.2p2.(3P).3p b4F 3d6.(3F4).4s b4F 3d6.(3F4).4s 2Do 2s2.2p2.(3P).3p 2P 2s2.2p2.(1D).4d e4F 3d6.(5D).4d b4F 3d6.(3F4).4s 2[5/2] 2s2.2p.(2Po<3/2>).4f.D 2[3/2] 2s2.2p.(2Po<3/2>).4f.D 1S 1s.5s 1Do 2s2.2p.(2Po).3d 2F 2s2.2p2.(1D).3d 2[1]o 2s2.2p2.(1D).4f.P a6S 3d5.4s2 2Do 2s2.2p2.(3P).3p 6P 3d6.(5D).4d 4So 2s.2p3.(5So).3s 2[2]o 2s2.2p4.(3P<2>).4f 2[3]o 2s2.2p4.(3P<1>).4f 2[2]o 2s2.2p4.(3P<2>).4f b4F 3d6.(3F4).4s 3Po 2s2.2p.(2Po).3d 6P 2s.2p3.(5So).3p 3Po 2s2.2p.(2Po).3d 2[2]o 2s2.2p2.(3P).4f.D 2[2]o 2s2.2p2.(3P).4f.D 6P 2s.2p3.(5So).3p e4F 3d6.(5D).4d 6P 2s.2p3.(5So).3p 2[1]o 2s2.2p2.(3P).4f.D 3D 1s.4d a6S 3d5.4s2 3.5 1.5 2.0 2.5 **** 1.5 1.0 ... 4.5 4.5 1.5 2.0 1.5 ... 2.5 1.5 4.5 4.5 0.5 0.5 2.5 3.5 2.0 0.0 1.0 1.0 3.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 1.5 3.5 1.0 2.5 1.0 1.5 1.5 2.5 3.5 2.5 0.5 2.0 0.5

2.5 2.5 0.0 1.5 **** 2.5 2.0 ... 5.5 4.5 0.5 3.0 2.5 ... 2.5 2.5 4.5 4.5 1.5 1.5 1.5 2.5 3.0 1.0 0.0 2.0 3.5 **** 2.5 1.5 1.5 1.5 2.5 2.5 1.5 3.5 0.0 3.5 1.0 2.5 1.5 2.5 3.5 1.5 0.5 3.0 2.5

2/0 3/0 0/0 4/4 ... 5/0 0/0 ... ... ... 3/0 2/0 2/0 ... 3/2 2/1 3/1 3/0 2/1 1/0 8/1 7/1 ... ... 0/0 0/0 3/0 ... 4/2 2/0 6/1 2/0 ... ... ... 6/1 5/1 1/1 5/0 ... ... 2/2 7/0 2/2 ... 2/0 4/2


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 29.9 81.2 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0061 0.0193

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4477.745....... 4481.213.......

25.1 30.6

0.0055 0.0176

4483.494....... 4485.231....... 4487.744....... 0.0024 9.7

15.7 34.2 17.4

0.0018 0.0020 0.0008

0.0020 0.0021 0.0009

8.6 10.5 99999.0

4488.194.......

18.9

0.0022

4489.468....... 4491.278.......

23.0 19.6

0.0007 0.0115

0.0007 0.0125

7.0 56.5

171
0.0263 0.0022 0.0257 0.0060 0.0061 0.0182 0.0107 0.0264 41.7 103.9 59.1 23.7 8.1 104.0 12.5 96.0 0.0013 0.0805 0.0026 0.0056 0.0297 0.0052 0.0428 0.0344 140.5 7.0 217.7 16.6 19.5 125.4 23.4 156.1

4503.289 4507.554 4530.404 4545.218 4552.505 4562.637 4571.161 4590.959 4596.171

....... ....... ....... ....... ....... ....... ....... ....... .......

17.4 13.1 16.7 23.6 22.1 57.5 52.8 16.5 15.5

0.0014 0.0047 0.0039 0.0023 0.0024 0.0387 0.4017 0.0135 0.0089

0.0015 0.0051 0.0042 0.0024 0.0026 0.0414 0.4291 0.0143 0.0094

10.3 25.8 21.6 11.8 11.3 168.8 173.0 73.2 37.8

4601.471....... 4602.121....... 4607.140.......

17.3 12.6 17.5

0.0248 0.0020 0.0243

4609.436....... 4611.738.......

15.3 41.4

0.0057 0.0057

4613.858.......

19.6

0.0172

4620.348....... 4621.384.......

21.5 18.0

0.0101 0.0250

4627.940 4630.531 4634.079 4637.456 4638.816 4640.604 4641.802

....... ....... ....... ....... ....... ....... .......

16.0 16.8 18.8 23.2 18.4 15.4 15.1

0.0013 0.0765 0.0024 0.0053 0.0283 0.0049 0.0407

4643.078.......

17.0

0.0327

4A 7A 7A 8C 5C 7B 7 2A 4D 2A 2A 3C 3A 5B 4A .. . 5B 3A .. . 3A .. . 2A 2A 8 2A 2A 2A 4A .. . 2A 5B 5B 6D 2A 7A 3A 7D 6B 8 2A 2A 8C 2A 3A 1A 2B 1A

N ii Mg ii Mg ii Mg ii S ii Fe iii Fe ii O ii N ii O ii O ii S ii O ii C ii O ii ... N ii N ii ... N ii ... Mg i] O ii O ii O ii N ii O ii [Fe iii] N ii O ii O ii O ii O ii N ii C ii N ii Si ii [C i] [Ni ii] N ii N iii C ii O ii N iii O ii N iii N ii

4477.682 4481.126: 4481.150: 4481.325 ? 4483.427: 4485.575: 4487.497: 4487.712 4488.095 4488.184 4488.198 4488.188 4489.461 4491.130: 4491.222 ... 4507.560: 4530.410 ... 4552.522 ... 4571.096 4590.974 4595.957 4596.176 4601.478 4602.129 4607.030 4607.153 4609.436 4611.582: 4611.597: 4613.681: 4613.868 4620.185 4621.393 4621.419: 4621.570: 4628.046 ? 4630.539 4634.120 4637.630 4638.856 4640.640 4641.810 4641.850 4643.086

À4.2 À5.8 À4.2 7.5 À4.5 23.0 À16.5 À2.2 À6.6 À0.7 0.3 À0.4 À0.5 À9.9 À3.7 .. . 0.4 0.4 .. . 1.1 .. . À4.3 1.0 À14.0 0.3 0.4 0.5 À7.2 0.8 0.0 À10.1 À9.1 À11.5 0.7 À10.6 0.6 2.3 12.1 6.9 0.5 2.7 11.2 2.6 2.3 0.5 3.1 0.5 3D 2s2.2p.(2Po).3p 2D 3d 2D 3d 2D 3d 4Do 3s2.3p2.(3P).4p 3G 3d5.(2G3).4s y6Po 3d5.(6S).4s.4p.(3Po) 2P 2s2.2p2.(1D).3d 3D 2s2.2p.(2Po).3p 2P 2s2.2p2.(1D).3d 2P 2s2.2p2.(1D).3d 2D 3s2.3p2.(3P).4d 2P 2s2.2p2.(3P).3d 2Fo 2s2.4f 2P 2s2.2p2.(3P).3d ... 3D 2s2.2p.(2Po).3p 1Fo 2s2.2p.(2Po).3d ... 1Fo 2s2.2p.(2Po).3d ... 1S 3s2 2D 2s2.2p2.(1D).3s 2D 2s2.2p2.(1D).3s 2D 2s2.2p2.(1D).3s 3Po 2s2.2p.(2Po).3s 2D 2s2.2p2.(3P).3d 5D 3d6 3Po 2s2.2p.(2Po).3s 2D 2s2.2p2.(3P).3d 4F 2s2.2p2.(3P).4d 4F 2s2.2p2.(3P).4d 2D 2s2.2p2.(3P).3d 3Po 2s2.2p.(2Po).3s 2D 2s2.4d 3Po 2s2.2p.(2Po).3s 2D 3s2.(1S).4d 3P 2s2.2p2 2D 3d9 3Po 2s2.2p.(2Po).3s 2Po 2s2.3p 2Po 2s2.4p 4P 2s2.2p2.(3P).3s 2Po 2s2.3p 4P 2s2.2p2.(3P).3s 2Po 2s2.3p 3Po 2s2.2p.(2Po).3s 3Po 2s2.2p.(2Po).3d 2Fo 4f 2Fo 4f 2Fo 4f 4P 3s2.3p2.(3P).5s 3Fo 3d5.(a2F).4p 6P 3d6.(5D).4d 2[2]o 2s2.2p2.(1D).4f.D 3Po 2s2.2p.(2Po).3d 2[2]o 2s2.2p2.(1D).4f.D 2[2]o 2s2.2p2.(1D).4f.D 2[2]o 3s2.3p2.(1D<2>).5f 2[2]o 2s2.2p2.(3P).4f.D 2G 2s2.9g 2[3]o 2s2.2p2.(3P).4f.D ... 3Po 2s2.2p.(2Po).3d 2[9/2] 2s2.2p.(2Po<3/2>).4f.G ... 2[7/2] 2s2.2p.(2Po<3/2>).4f.G ... 3Po 3s.3p 2Fo 2s2.2p2.(1D).3p 2Fo 2s2.2p2.(1D).3p 2Fo 2s2.2p2.(1D).3p 3P 2s2.2p.(2Po).3p 2[3]o 2s2.2p2.(3P).4f.F 3F4 3d6 3P 2s2.2p.(2Po).3p 2[4]o 2s2.2p2.(3P).4f.F 2[2]o 2s2.2p2.(1D).4f.D 2[2]o 2s2.2p2.(1D).4f.D 2[3]o 2s2.2p2.(3P).4f.F 3P 2s2.2p.(2Po).3p 2Fo 2s2.8f 3P 2s2.2p.(2Po).3p 2Fo 3s2.(1S).7f 1S 2s2.2p2 4P 3d8.(3P).4s 3P 2s2.2p.(2Po).3p 2D 2s2.3d 2D 2s2.6d 4Do 2s2.2p2.(3P).3p 2D 2s2.3d 4Do 2s2.2p2.(3P).3p 2D 2s2.3d 3P 2s2.2p.(2Po).3p 2.0 2.5 2.5 1.5 2.5 5.0 2.5 0.5 2.0 1.5 1.5 1.5 0.5 **** 1.5 ... 3.0 3.0 ... 3.0 ... 0.0 2.5 2.5 1.5 1.0 1.5 4.0 0.0 2.5 2.5 2.5 2.5 1.0 **** 1.0 1.5 1.0 1.5 2.0 0.5 0.5 0.5 1.5 1.5 1.5 2.0

1.0 3.5 2.5 2.5 1.5 4.0 2.5 1.5 2.0 2.5 1.5 **** 1.5 **** 2.5 ... 2.0 4.0 ... 4.0 ... 1.0 3.5 2.5 2.5 2.0 2.5 3.0 1.0 3.5 2.5 1.5 3.5 1.0 **** 0.0 2.5 0.0 2.5 2.0 1.5 1.5 1.5 2.5 2.5 1.5 1.0

5/1 2/0 2/0 2/0 5/0 2/1 6/1 ... 4/1 ... ... ... ... ... ... ... 2/0 ... ... ... ... 0/0 2/1 2/0 2/1 4/4 ... 4/1 ... ... ... ... ... 5/5 ... 5/5 2/0 0/0 3/0 3/3 2/1 2/0 7/7 2/1 5/5 2/2 4/4


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 210.8 99.3 6.0 14.7 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0670 0.0217 0.0005 0.0031

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4649.128....... 4650.826....... 4651.559.......

15.6 15.5 24.6

0.0639 0.0207 0.0005

4654.475.......

19.6

0.0030

4658.174 4661.625 4667.255 4669.227 4673.725 4674.903 4676.225 4678.137 4681.881 4696.335 4699.129

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

31.1 15.6 25.2 57.3 16.4 16.7 16.2 24.3 63.8 14.7 38.9

0.0262 0.0221 0.0027 0.0073 0.0039 0.0020 0.0152 0.0013 0.0021 0.0026 0.0128

0.0274 0.0231 0.0028 0.0076 0.0041 0.0021 0.0158 0.0014 0.0021 0.0027 0.0133

116.9 115.0 15.6 34.3 22.8 16.1 77.3 5.8 6.2 14.4 42.0

172
0.0183 0.0261 0.0040 0.0080 72.8 76.5 12.9 14.8

4703.145 4705.344 4710.015 4711.352 4713.174 4716.325 4726.961 4733.956 4740.205 4752.893 4754.741 4756.449 4757.232 4769.653 4772.109 4774.263 4777.788 4779.715 4781.311 4788.127 4789.589 4792.040

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

16.4 14.6 20.7 13.9 24.2 18.8 30.2 34.5 12.7 27.3 35.8 29.4 17.1 59.7 33.6 13.5 33.2 17.8 28.9 15.6 34.7 19.2

0.0021 0.0176 0.0065 0.0029 0.5902 0.0036 0.0026 0.0046 0.0035 0.0168 0.0046 0.0233 0.0009 0.0061 0.0024 0.0022 0.0032 0.0176 0.0013 0.0192 0.0268 0.0016

0.0021 0.0183 0.0067 0.0030 0.6098 0.0037 0.0027 0.0048 0.0036 0.0172 0.0047 0.0239 0.0010 0.0062 0.0025 0.0022 0.0032 0.0179 0.0013 0.0195 0.0272 0.0017

7.1 61.4 21.7 10.3 233.5 8.9 5.8 18.6 19.6 77.0 23.3 82.9 8.6 20.4 14.0 15.0 12.5 88.9 7.9 101.9 112.1 7.8

4802.454....... 4803.276....... 4810.209.......

19.5 16.9 49.2

0.0181 0.0258 0.0039

4814.688.......

44.6

0.0079

1A 1A 6A 6A 6A 6A 6A 5A 1A 6A 2A 1A .. . 1A 2A 6B 1A 7 6B 4A 4A .. . 0A 3A 3A .. . 0A 1A .. . 3A .. . .. . 6A 4A 1A 3A 2A 6A 2A .. . 5C 3A 6B 4A 4A 6 5A

O ii O ii O ii C iii O i: Oi Oi [Fe iii] O ii [Fe iii] O ii O ii ... O ii N ii O ii O ii O ii O ii O ii O ii ... [Ar iv] He i [Fe iii] ... [Fe iii] [Ar iv] ... [Fe iii] ... ... [Fe iii] [Fe ii] N ii [Fe iii] N ii N ii N ii ... S ii O ii C ii N ii Ne ii N ii [Fe ii]

4649.135 4650.838 4651.326: 4651.473 ? 4654.556 4654.557: 4654.559: 4658.050: 4661.632 4667.010: 4669.260 4673.733 ... 4676.235 4678.135 4681.963: 4696.353 4699.011: 4699.218: 4703.161 4705.346 ... 4711.370 4713.139 4716.330 ... 4733.910 4740.160 ... 4754.690 ... ... 4769.430: 4772.062 ? 4774.244 4777.680 4779.723 4781.190: 4788.137 ... 4792.007: 4792.083 ? 4802.740: 4803.286 4810.214 ? 4810.299: 4814.534:

0.4 0.8 À15.0 À5.5 5.2 5.3 5.4 À8.0 0.5 À15.8 2.1 0.5 .. . 0.6 À0.2 5.3 1.2 À7.5 5.7 1.0 0.1 .. . 1.2 À2.2 0.3 .. . À2.9 À2.8 .. . À3.2 .. . .. . À14.0 À2.9 À1.2 À6.8 0.5 À7.6 0.6 .. . À2.1 2.7 17.9 0.6 0.3 5.6 À9.6

4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 4F 2s2.2p2.(3P).4d 3S 2s.3s 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5D 3d6 4P 2s2.2p2.(3P).3s 5D 3d6 2D 2s2.2p2.(3P).3d 4P 2s2.2p2.(3P).3s ... 4P 2s2.2p2.(3P).3s 1Po 2s2.2p.(2Po).3d 2P 2s2.2p2.(3P).4s 4P 2s2.2p2.(3P).3s 2Do 2s2.2p2.(1D).3p 2Do 2s2.2p2.(3P).3p 2Do 2s2.2p2.(1D).3p 2Do 2s2.2p2.(3P).3p ... 4So 3s2.3p3 3Po 1s.2p 3F4 3d6 ... 5D 3d6 4So 3s2.3p3 ... 5D 3d6 ... ... 5D 3d6 a6D 3d6.(5D).4s 3D 2s2.2p.(2Po).3p 5D 3d6 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p ... 4Po 3s2.3p2.(3P).4p 4D 2s2.2p2.(3P).4d 2Fo 2s2.4f 3D 2s2.2p.(2Po).3p 4Do 2s2.2p4.(3P).4p 3D 2s2.2p.(2Po).3p a4F 3d7

4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 2[3]o 2s2.2p2.(1D).4f.F 3Po 2s.3p 5Do 2s2.2p3.(4So).8d 5Do 2s2.2p3.(4So).8d 5Do 2s2.2p3.(4So).8d 3F4 3d6 4Do 2s2.2p2.(3P).3p 3F4 3d6 2[2]o 2s2.2p2.(3P).4f.D 4Do 2s2.2p2.(3P).3p ... 4Do 2s2.2p2.(3P).3p 2[3/2] 2s2.2p.(2Po<3/2>).4f.D 2Do 2s2.2p2.(3P).5p 4Do 2s2.2p2.(3P).3p 2F 2s2.2p2.(1D).3d 2F 2s2.2p2.(3P).3d 2F 2s2.2p2.(1D).3d 2F 2s2.2p2.(3P).3d ... 2Do 3s2.3p3 3S 1s.4s 1F 3d6 ... 3F4 3d6 2Do 3s2.3p3 ... 3F4 3d6 ... ... 3F4 3d6 b4P 3d6.(3P4).4s 3Do 2s2.2p.(2Po).3d 3F4 3d6 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d ... 4P 3s2.3p2.(3P).5s 2[3]o 2s2.2p2.(1D).4f.F 2G 2s2.8g 3Do 2s2.2p.(2Po).3d 4P 2s2.2p4.(3P).5d 3Do 2s2.2p.(2Po).3d b4F 3d6.(3F4).4s

2.5 0.5 2.5 1.0 2.0 2.0 2.0 4.0 1.5 3.0 1.5 1.5 ... 2.5 1.0 1.5 2.5 2.5 1.5 1.5 2.5 ... 1.5 2.0 3.0 ... 2.0 1.5 ... 3.0 ... ... 2.0 1.5 1.0 1.0 1.0 2.0 2.0 ... 2.5 3.5 **** 3.0 1.5 3.0 4.5

3.5 0.5 **** 0.0 1.0 2.0 3.0 4.0 1.5 2.0 2.5 0.5 ... 2.5 2.0 2.5 1.5 3.5 2.5 2.5 3.5 ... 2.5 1.0 3.0 ... 2.0 1.5 ... 4.0 ... ... 3.0 1.5 2.0 2.0 1.0 3.0 2.0 ... 2.5 **** **** 3.0 0.5 2.0 4.5

2/2 7/7 ... 2/0 8/0 7/0 5/0 3/1 7/7 6/1 ... 7/7 ... 4/4 ... 2/0 5/5 2/0 2/0 2/0 2/0 ... 1/1 1/0 2/0 ... 7/2 1/1 ... 4/0 ... ... 7/1 7/0 6/3 7/4 6/4 4/0 6/3 ... 3/0 ... ... 3/1 7/0 4/0 3/0


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 13.7 13680.0 19.4 56.9 50.5 22.5 385.1 25.1 85.6 14.0 9084.0 29.6 71.1 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0170 100.0000 0.0052 0.0154 0.0137 0.0042 1.2186 0.0089 0.0294 0.0037 72.7233 0.0211 0.0165

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

4815.483.......

60.5

0.0168

4861.327 4869.377 4881.140 4890.905 4906.809 4921.933 4924.524

....... ....... ....... ....... ....... ....... .......

32.5 23.0 33.4 33.5 13.1 22.0 16.4

100.0000 0.0052 0.0155 0.0138 0.0043 1.2341 0.0091

4931.229....... 4953.007.......

18.8 16.8

0.0298 0.0038

4958.915....... 4964.751....... 4987.360.......

16.0 32.7 19.4

74.1985 0.0216 0.0170

173
0.0725 0.0289 0.1887 0.1200 0.0014 0.0009 0.0268 0.0058 0.0030 0.0164 0.0044 0.0095 0.0040 0.0281 12.3 90.1 19.6 7.1 7.7 103.7 29.6 12.7 47.1 14.9 167.0 323.6 199.7 112.9 0.0046 0.0102 16.4 36.2

4994.374 5006.845 5015.679 5031.963 5035.808

....... ....... ....... ....... .......

18.6 15.6 21.3 19.3 21.7

0.0435 221.3740 2.4681 0.0449 0.0577

0.0423 214.9350 2.3922 0.0434 0.0558

146.2 9892.0 651.7 69.0 75.7

5041.022....... 5045.095.......

44.7 18.1

0.0751 0.0300

5047.741....... 5056.067.......

23.1 51.6

0.1958 0.1247

5080.619 5099.390 5121.850 5125.232 5126.960 5131.705 5133.114

....... ....... ....... ....... ....... ....... .......

43.0 49.2 20.8 14.9 16.9 57.3 39.5

0.0015 0.0009 0.0282 0.0061 0.0032 0.0173 0.0047

5143.424.......

51.8

0.0100

5145.165....... 5146.692.......

14.8 54.1

0.0042 0.0297

5151.117....... 5158.858.......

20.5 53.3

0.0049 0.0108

6B 8 3A .. . .. . 5A 3A 2A 1A .. . 0A 3A 3A 0A 3A 3A 5C .. . .. . 0A 1A 6B 8C 8C 4A 2A 3B 1A 5B 8 .. . .. . 1A 1A 1A .. . 6B 8D 3A 5B 3B 8 4B 4B 3A 2A 1A

S ii N ii Hi ... [Fe iii] O ii O ii He i O ii [Fe iii] [O iii] O ii O ii [O iii] C ii C ii N ii [Fe iii] N ii [O iii] He i C ii [Fe ii] C ii Si ii O ii N ii He i Si ii Si ii ... ... C ii C ii C ii ... C ii C ii [Fe iii] C ii C ii Oi Oi Oi Oi C ii [Fe ii]

4815.552: 4815.617 ? 4861.325 ... 4881.000 4890.856: 4906.830 4921.931 4924.529 4924.500 ? 4931.226 4952.940 ? 4952.950 ? 4958.911 4964.736 4987.300 ? 4987.377: 4987.200 4994.371 5006.843 5015.678 5032.128: 5035.484 ? 5035.943 ? 5041.024 5045.119 ? 5045.099 5047.738 5055.984 5056.316 ? ... ... 5121.828 5125.208 5126.963 ... 5132.947 5133.282 5143.290 ? 5143.494: 5145.165 5146.462 ? 5146.610 ? 5146.652 ? 5146.700 ? 5151.085 5158.777

4.3 8.4 À0.1 .. . À8.6 À3.0 1.3 À0.1 0.3 À1.5 À0.2 À4.1 À3.4 À0.2 À0.9 À3.6 1.0 À9.6 À0.2 À0.1 À0.1 9.8 À19.3 8.0 0.1 1.4 0.2 À0.2 À4.9 14.8 .. . .. . À1.3 À1.4 0.2 .. . À9.8 9.8 À7.8 4.1 0.0 À13.4 À4.8 À2.3 0.5 À1.9 À4.7

4P 3s2.3p2.(3P).4s 5Do 2s.2p2.(4P).3p 2 2* ... 5D 3d6 4So 2s2.2p2.(3P).3p 4So 2s2.2p2.(3P).3p 1Po 1s.2p 4So 2s2.2p2.(3P).3p 5D 3d6 3P 2s2.2p2 2[4] 2s2.2p2.(3P<1>).5g 2[4] 2s2.2p2.(3P<1>).5g 3P 2s2.2p2 2P 2s.2p.(3Po).3p 4P 2s.2p.(3Po).4p 3S 2s2.2p.(2Po).3p a5D 3S 2s2.2p.(2Po).3p 3P 2s2.2p2 1S 1s.2s 2Po 2p3 a6D 3d6.(5D).4s 2Po 2p3 2Po 3s2.(1S).4p 2[4] 2s2.2p2.(3P<2>).5g 3Po 2s2.2p.(2Po).3s 1Po 1s.2p 2Po 3s2.(1S).4p 2Po 3s2.(1S).4p ... ... 2Po 2s2.4p 2Po 2s2.4p 2Po 2s2.4p ... 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 3D 3d6 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 1F 2s2.2p3.(2Do).3p 4Po 2s.2p.(3Po).3s a4F 3d7

4So 3s2.3p2.(3P).4p 5P 2s.2p2.(4P).3d 4 4* ... 3H 3d6 4P 2s2.2p2.(3P).3d 4P 2s2.2p2.(3P).3d 1D 1s.4d 4P 2s2.2p2.(3P).3d 3H 3d6 1D 2s2.2p2 2[5]o 2s2.2p2.(1D).5f.H 2[5]o 2s2.2p2.(1D).5f.H 1D 2s2.2p2 2Po 2s.2p.(3Po).3d 4Do 2s.2p.(3Po).6d 3Po 2s2.2p.(2Po).3d a3H 3Po 2s2.2p.(2Po).3d 1D 2s2.2p2 1Po 1s.3p 2D 2s.2p.(3Po).3p b4P 3d6.(3P4).4s 2D 2s.2p.(3Po).3p 2D 3s2.(1S).4d 2[4]o 2s2.2p2.(1D).5f.G 3S 2s2.2p.(2Po).3p 1S 1s.4s 2D 3s2.(1S).4d 2D 3s2.(1S).4d ... ... 2P 2s.2p.(3Po).3p 2P 2s.2p.(3Po).3p 2P 2s.2p.(3Po).3p ... 4P 2s.2p.(3Po).3p 4P 2s.2p.(3Po).3p 3F2 3d6 4P 2s.2p.(3Po).3p 4P 2s.2p.(3Po).3p 3So 2s2.2p3.(4So).9s 3So 2s2.2p3.(4So).9s 3So 2s2.2p3.(4So).9s 1Do 2s2.2p3.(2Do<3/2>).7s 4P 2s.2p.(3Po).3p a4H 3d6.(3H).4s

2.5 1.0 **** ... 4.0 1.5 1.5 1.0 1.5 4.0 0.0 3.5 4.5 1.0 1.5 2.5 1.0 3.0 1.0 2.0 0.0 1.5 0.5 0.5 0.5 **** 2.0 1.0 1.5 1.5 ... ... 1.5 0.5 1.5 ... 0.5 1.5 3.0 1.5 2.5 1.0 2.0 0.0 3.0 2.5 4.5

1.5 1.0 **** ... 4.0 0.5 1.5 2.0 2.5 5.0 2.0 **** **** 2.0 1.5 3.5 0.0 4.0 1.0 2.0 1.0 2.5 2.5 1.5 1.5 4.5 1.0 0.0 2.5 1.5 ... ... 1.5 0.5 0.5 ... 1.5 2.5 3.0 0.5 2.5 1.0 1.0 1.0 2.0 1.5 6.5

1/0 8/0 0/0 ... ... 2/0 2/1 0/0 1/1 ... 2/2 ... ... 1/1 3/0 0/0 2/0 ... ... 1/1 0/0 2/1 8/0 2/1 2/0 ... 1/0 0/0 2/0 2/0 ... ... 3/2 3/2 3/2 ... 6/0 4/0 4/1 6/1 3/1 2/0 1/0 2/0 0/0 4/2 2/1


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 9.9 99999.0 99999.0 8.1 18.4 29.0 186.5 238.0 238.8 9.3 7.6 7.2 25.6 53.9 8.1 41.0 5.6 180.2 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0049 0.0049 0.0045 0.0018 0.0033 0.0050 0.0386 0.2011 0.1173 0.0010 0.0031 0.0032 0.0062 0.0151 0.0018 0.0186 0.0019 0.0371

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

5167.180....... 5172.786.......

40.6 56.4

0.0052 0.0052

5173.564....... 5175.862....... 5179.521.......

30.7 14.0 18.6

0.0048 0.0019 0.0036

5183.806 5191.702 5198.012 5200.329 5217.986 5258.999 5259.664

....... ....... ....... ....... ....... ....... .......

45.7 18.8 53.5 53.2 17.8 24.3 28.9

0.0053 0.0411 0.2145 0.1252 0.0011 0.0034 0.0034

5261.726 5270.562 5273.346 5275.155

....... ....... ....... .......

49.0 30.7 49.8 58.6

0.0067 0.0163 0.0019 0.0201

174
0.0023 8.2 0.0056 0.0063 0.0277 0.0035 0.0057 0.0014 0.0053 0.0072 0.0029 0.0006 0.0019 0.0042 0.0083 0.0045 0.0016 0.0021 0.0030 36.4 9.5 17.3 19.6 25.9 46.8 7.3 9.1 13.6 9.6 11.2 12.9 20.8 42.4 153.2 20.5 27.9

5284.920....... 5299.059.......

26.9 53.3

0.0020 0.0402

5330.516.......

33.1

0.0025

5332.771 5334.647 5342.392 5345.943 5368.205

....... ....... ....... ....... .......

19.5 20.7 18.4 16.3 20.7

0.0061 0.0069 0.0302 0.0038 0.0063

5374.845 5376.691 5380.882 5400.553 5412.255 5432.799

....... ....... ....... ....... ....... .......

14.8 70.0 78.3 50.4 16.2 24.8

0.0015 0.0058 0.0079 0.0031 0.0006 0.0021

5452.063....... 5454.035.......

20.2 43.2

0.0046 0.0092

5462.568 5463.566 5473.624 5478.087

....... ....... ....... .......

26.2 45.1 42.0 16.6

0.0050 0.0018 0.0023 0.0033

5A 6A * 8D 5C 7 2A .. . 5A 1A 0A .. . 4B 3A 5C 3A 6B 4A 3A 5B .. . 9 4A 6C 8D 8D 8D 5A 5A 4A .. . 6D 8 .. . 6B 8 .. . 7A 7A .. . 3A 8 8 2A .. . 3B 2A

Oi [Fe iii] N ii N ii N ii N ii N ii ... [Ar iii] [N i] [N i] ... C ii C ii C ii [Fe ii] [Fe iii] [Fe ii] Oi Oi ... Oi Oi Oi Oi Oi Oi C ii C ii C ii ... C ii C ii ... [Fe ii] O ii ... [Fe iii] [Fe ii] S ii N ii S ii N ii N ii ... S ii N ii

5167.300: 5172.640: 5172.973 ? 5173.385 ? 5175.889: 5179.344: 5179.520 ... 5191.820 5197.901 5200.257 ... 5259.055 5259.664 5259.758 5261.621 5270.400: 5273.346 5275.123 5275.167 ... 5298.887 ? 5299.044 5299.088 5330.726 ? 5330.735 ? 5330.741 ? 5332.889 5334.789 5342.370 ... 5368.340: 5368.460 ? ... 5376.452: 5380.640 ? ... 5411.980: 5433.129: 5432.797 5452.071 5453.855 ? 5454.215 ? 5462.581 ... 5473.614 5478.086

6.9 À8.5 10.8 À10.4 1.6 À10.2 À0.1 .. . 6.8 À6.4 À4.1 .. . 3.2 0.0 5.3 À6.0 À9.2 0.0 À1.8 0.7 .. . À9.7 À0.8 1.7 11.8 12.3 12.7 6.6 8.0 À1.2 .. . 7.5 14.2 .. . À13.3 À13.5 .. . À15.2 18.3 À0.1 0.4 À9.9 9.9 0.7 .. . À0.6 À0.1

1D 2s2.2p3.(2Po).3p 3D 3d6 5Do 2s.2p2.(4P).3p 5Do 2s.2p2.(4P).3p 5Do 2s.2p2.(4P).3p 5Po 2s.2p2.(4P).3p 5Do 2s.2p2.(4P).3p ... 1D 3s2.3p4 4So 2s2.2p3 4So 2s2.2p3 ... 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d a4F 3d7 5D 3d6 a4F 3d7 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p ... 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 2Po 2s2.4p 2Po 2s2.4p 2Fo 2s2.4f ... 2D 2s2.4d 2D 2s2.4d ... a4F 3d7 4F 2s2.2p2.(3P).4d ... 5D 3d6 a4F 3d7 4P 3s2.3p2.(3P).4s 3P 2s2.2p.(2Po).3p 4P 3s2.3p2.(3P).4s 3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p ... 4P 3s2.3p2.(3P).4s 3P 2s2.2p.(2Po).3p

1Po 2s2.2p3.(2Po).8s 3F2 3d6 5F 2s.2p2.(4P).3d 5F 2s.2p2.(4P).3d 5F 2s.2p2.(4P).3d 5D 2s.2p2.(4P).3d 5F 2s.2p2.(4P).3d ... 1S 3s2.3p4 2Do 2s2.2p3 2Do 2s2.2p3 ... 4D 2s.2p.(3Po).4p 4D 2s.2p.(3Po).4p 4D 2s.2p.(3Po).4p a4H 3d6.(3H).4s 3P4 3d6 b4P 3d6.(3P4).4s 3Do 2s2.2p3.(4So).7d 3Do 2s2.2p3.(4So).7d ... 3So 2s2.2p3.(4So).8s 3So 2s2.2p3.(4So).8s 3So 2s2.2p3.(4So).8s 5Do 2s2.2p3.(4So).5d 5Do 2s2.2p3.(4So).5d 5Do 2s2.2p3.(4So).5d 2S 2s2.6s 2S 2s2.6s 2G 2s2.7g ... 2Po 2s2.7p 2Po 2s2.7p ... a4H 3d6.(3H).4s 4Do 2s2.2p2.(3P).7p ... 3P4 3d6 b4P 3d6.(3P4).4s 4Do 3s2.3p2.(3P).4p 3Po 2s2.2p.(2Po).3d 4Do 3s2.3p2.(3P).4p 3Po 2s2.2p.(2Po).3d 3Po 2s2.2p.(2Po).3d ... 4Do 3s2.3p2.(3P).4p 3Po 2s2.2p.(2Po).3d

2.0 3.0 0.0 2.0 3.0 3.0 4.0 ... 2.0 1.5 1.5 ... 3.5 1.5 2.5 3.5 3.0 4.5 2.0 0.0 ... 1.0 2.0 0.0 3.0 3.0 3.0 0.5 1.5 **** ... 1.5 1.5 ... 1.5 2.5 ... 1.0 3.5 1.5 0.0 2.5 1.0 1.0 ... 0.5 1.0

1.0 2.0 1.0 3.0 4.0 4.0 5.0 ... 0.0 1.5 2.5 ... 2.5 0.5 1.5 5.5 2.0 2.5 **** **** ... 1.0 1.0 1.0 2.0 3.0 4.0 0.5 0.5 **** ... 1.5 0.5 ... 3.5 3.5 ... 2.0 2.5 2.5 1.0 3.5 0.0 1.0 ... 0.5 2.0

0/0 4/1 */0 8/0 5/1 2/0 2/1 ... 0/0 1/1 1/1 ... 5/1 8/1 8/1 5/1 2/0 2/0 1/0 2/0 ... 2/0 1/0 2/0 5/0 4/0 2/0 1/1 1/1 ... ... 2/0 2/0 ... 9/0 5/0 ... 5/0 4/0 ... 5/4 2/0 5/0 5/4 ... 7/1 4/4


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 34.9 87.5 95.3 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0056 0.0148 0.0313

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

5480.050....... 5495.655.......

17.0 19.1

0.0062 0.0165

5512.790.......

60.9

0.0350

5517.686....... 5526.212....... 0.0021 0.0050 10.8 26.4

24.3 25.8

0.2038 0.0017

0.1819 0.0015

313.3 7.1

5530.215....... 5535.359.......

19.2 16.9

0.0023 0.0056

5537.853 5543.517 5545.933 5547.994 5551.930 5554.983

....... ....... ....... ....... ....... .......

36.1 27.6 18.8 36.1 12.0 56.0

0.4000 0.0050 0.0017 0.0024 0.0007 0.0179

0.3560 0.0045 0.0015 0.0022 0.0006 0.0159

216.6 15.3 10.7 7.7 7.5 84.5

175
0.0012 0.0263 0.0011 0.0014 0.0013 0.0018 0.0020 0.0014 0.0025 0.0015 0.0414 0.0197 0.0674 0.0127 0.0017 0.0019 0.0136 0.0008 8.3 4.5 176.9 123.4 170.8 70.1 9.5 3.7 75.9 99999.0 14.8 10.5 10.1 7.2 143.2 8.9 8.7 10.4 0.0025 0.0013 0.0039 0.0069 10.9 8.9 21.8 20.4

5567.469 5577.389 5587.863 5595.511 5606.134

....... ....... ....... ....... .......

19.8 48.6 10.7 35.5 34.0

0.0013 0.0297 0.0013 0.0015 0.0015

5627.804....... 5640.188....... 5648.066.......

22.0 24.4 24.5

0.0021 0.0023 0.0016

5662.337 5664.519 5666.630 5676.023 5679.552 5686.199 5705.318 5708.910 5710.763 5711.604

....... ....... ....... ....... ....... ....... ....... ....... ....... .......

27.3 20.5 17.1 17.6 20.7 18.5 24.2 43.1 18.7 30.6

0.0029 0.0017 0.0473 0.0225 0.0771 0.0145 0.0020 0.0022 0.0156 0.0009

5724.956 5730.637 5739.757 5744.476

....... ....... ....... .......

32.9 17.5 18.7 46.3

0.0029 0.0015 0.0045 0.0080

1A 3A 7C 8 3A 5B 2A 2A 2A 2A 1A 3C 2B 3A 1A 4A .. . 2A 7 4B 7 .. . 1A .. . 7 7A .. . 4A 6 4A 5B .. . 7D 1A 1A 2A 2A 4B .. . 1A * 8D 9 9D 2A 2A .. .

N ii N ii [Fe ii] Oi Oi Oi [Cl iii] N ii S ii N ii N ii C ii N ii [Cl iii] N ii [Fe ii] ... N ii Oi Oi Oi ... [O i] ... Fe iii [Fe ii] S ii N ii S ii C ii N ii ... S ii N ii N ii N ii N ii N ii ... N ii Fe iii S ii Fe i N ii N ii Si iii ...

5480.050 5495.655 5495.824: 5512.602 5512.772 5512.820 5517.720 5526.234 5526.243 ? 5530.242 5535.347 5535.353 5535.384 5537.890 5543.471 5545.900 ? ... 5551.922 5554.832 5555.004 5555.053 ... 5577.339 ... 5595.329: 5606.246: 5606.151 5627.760 5640.345: 5648.070 5648.137: ... 5664.773: 5666.629 5676.017 5679.558 5686.212 5705.316 ... 5710.766 5711.414 ? 5711.450 ? 5711.849 ? 5724.752 ? 5730.656 5739.734 ...

0.0 0.0 9.2 À10.2 À1.0 1.6 1.9 1.2 1.7 1.5 À0.6 À0.3 1.3 2.0 À2.5 À1.8 .. . À0.4 À8.1 1.2 3.8 .. . À2.7 .. . À9.8 6.0 0.9 À2.4 8.4 0.2 3.8 .. . 13.4 À0.1 À0.3 0.3 0.7 À0.1 .. . 0.2 À10.0 À8.1 12.8 À10.7 1.0 À1.2 .. .

3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p a4F 3d7 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 4So 3s2.3p3 5P 2s.2p2.(4P).3s 4F 3s2.3p2.(3P).3d 5P 2s.2p2.(4P).3s 5P 2s.2p2.(4P).3s 2S 2s2.4s 5P 2s.2p2.(4P).3s 4So 3s2.3p3 5P 2s.2p2.(4P).3s a4D 3d6.(5D).4s ... 5P 2s.2p2.(4P).3s 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p ... 1D 2s2.2p4 ... 5Fo 3d5.(4D).5p a4D 3d6.(5D).4s 4F 3s2.3p2.(3P).3d 3P 2s2.2p.(2Po).4p 4F 3s2.3p2.(3P).3d 4Po 2s.2p.(3Po).3s 3P 2s2.2p.(2Po).4p ... 4F 3s2.3p2.(3P).3d 3Po 2s2.2p.(2Po).3s 3Po 2s2.2p.(2Po).3s 3Po 2s2.2p.(2Po).3s 3Po 2s2.2p.(2Po).3s 3P 2s.2p2.(4P).3s ... 3Po 2s2.2p.(2Po).3s 5Fo 3d5.(4D).5p 4Po 3s2.3p2.(3P).5p y5Fo 3d7.(4F).4p 3D 2s2.2p.(2Po).4p 3Po 2s2.2p.(2Po).3s 1S 3s.4s ...

3Po 2s2.2p.(2Po).3d 3Po 2s2.2p.(2Po).3d a2D2 3d7 3Do 2s2.2p3.(4So).6d 3Do 2s2.2p3.(4So).6d 3Do 2s2.2p3.(4So).6d 2Do 3s2.3p3 5Do 2s.2p2.(4P).3p 4Do 3s2.3p2.(3P).4p 5Do 2s.2p2.(4P).3p 5Do 2s.2p2.(4P).3p 2Po 2s2.5p 5Do 2s.2p2.(4P).3p 2Do 3s2.3p3 5Do 2s.2p2.(4P).3p a4G 3d6.(3G).4s ... 5Do 2s.2p2.(4P).3p 3So 2s2.2p3.(4So).7s 3So 2s2.2p3.(4So).7s 3So 2s2.2p3.(4So).7s ... 1S 2s2.2p4 ... 5F 3d5.(4G).5d b2P 3d6.(3P4).4s 4Do 3s2.3p2.(3P).4p 3Po 2s2.2p.(2Po).5d 4Do 3s2.3p2.(3P).4p 4S 2s.2p.(3Po).3p 3Po 2s2.2p.(2Po).5d ... 4Do 3s2.3p2.(3P).4p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3Do 2s.2p2.(4P).3p ... 3D 2s2.2p.(2Po).3p 5F 3d5.(4G).5d 4P 3s2.3p2.(3P).6d g5D 3d6.4s.(4D).5s 3Fo 2s2.2p.(2Po).5d 3D 2s2.2p.(2Po).3p 1Po 3s.4p ...

2.0 2.0 1.5 1.0 2.0 0.0 1.5 1.0 3.5 2.0 3.0 0.5 1.0 1.5 2.0 3.5 ... 3.0 1.0 2.0 0.0 ... 2.0 ... 1.0 3.5 4.5 0.0 3.5 1.5 1.0 ... 1.5 1.0 0.0 2.0 1.0 1.0 ... 2.0 5.0 1.5 2.0 3.0 2.0 0.0 ...

1.0 2.0 1.5 **** **** **** 2.5 2.0 3.5 3.0 4.0 1.5 1.0 1.5 2.0 3.5 ... 3.0 1.0 1.0 1.0 ... 0.0 ... 2.0 1.5 3.5 1.0 2.5 1.5 2.0 ... 0.5 2.0 1.0 3.0 1.0 1.0 ... 2.0 5.0 0.5 2.0 2.0 1.0 1.0 ...

4/3 3/3 4/0 2/0 1/0 2/0 1/1 7/5 4/2 5/3 2/2 1/0 8/4 1/1 7/4 6/0 ... 4/2 2/0 1/0 2/0 ... 0/0 ... */1 2/0 ... 5/0 5/0 2/0 4/0 ... 8/1 5/5 5/5 2/2 5/5 5/0 ... 4/4 3/0 6/0 */1 4/0 4/4 0/0 ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 29.3 1907.0 7.0 16.2 10.4 9.5 4.4 4.9 9.3 15.8 75.2 10.0 12.3 9.8 22.3 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0033 2.7615 0.0020 0.0026 0.0022 0.0013 0.0011 0.0012 0.0019 0.0028 0.0129 0.0027 0.0042 0.0013 0.0035

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

5747.287.......

17.1

0.0038

5754.629 5759.785 5764.485 5766.223 5767.459

....... ....... ....... ....... .......

47.5 48.3 59.9 25.1 15.4

3.1908 0.0023 0.0030 0.0025 0.0015

5790.942 5793.201 5826.540 5832.961 5846.704 5852.354 5855.143 5859.582 5867.726

....... ....... ....... ....... ....... ....... ....... ....... .......

13.5 16.7 43.9 18.6 20.6 37.1 61.6 26.0 16.4

0.0012 0.0014 0.0022 0.0033 0.0150 0.0031 0.0049 0.0015 0.0041

176
0.0181 0.0344 0.0034 0.0191 0.0273 0.0139 0.0315 0.0008 0.0052 0.0136 0.0475 99.2 134.2 16.0 113.8 156.7 63.0 137.3 6.2 33.7 99999.0 99999.0 0.0238 0.0009 0.0028 0.0039 0.0881 19.4 153.2 182.4 6.2 13.4 0.0015 0.0014 12.0 12.7

5875.650....... 5879.032....... 5889.960.......

25.9 23.3 44.8

16.0305 0.0023 0.0931

13.6746 0.0020 0.0793

5395.0 8.5 301.5

5891.565 5896.024 5915.611 5927.802 5931.773 5940.264 5941.663 5944.925 5952.385 5957.653 5958.625

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

18.6 35.6 56.5 17.4 16.7 18.2 16.0 10.0 13.8 34.0 56.2

0.0213 0.0405 0.0040 0.0225 0.0322 0.0164 0.0372 0.0009 0.0061 0.0161 0.0563

5979.018....... 5991.093....... 6013.010.......

49.5 20.0 35.7

0.0282 0.0011 0.0034

6019.822....... 6046.471.......

40.3 60.9

0.0046 0.1053

6074.324....... 6096.195.......

19.0 20.7

0.0019 0.0017

7B 3A 2A .. . 6B .. . 5A 6B .. . 6B 7C .. . .. . .. . .. . .. . 6D 7 9 4A 3A 7 4B 5A 5C .. . 2A 2A 1A 1A 3A 2A 2A 8 3A 5C 2A 4A 8 8 7 8 3A 5B 3A 4A 9C

[Fe ii] O ii [N ii] ... S ii ... S ii [Fe ii] ... C ii S ii ... ... ... ... ... Al ii Al ii Al ii He i N ii C ii Na i C ii Na i ... N ii N ii N ii N ii N ii N ii Si ii Oi Oi Oi Si ii Ci Ci Ci Ci Oi Oi Oi Ne i [Fe iii] N ii

5746.966: 5747.330 5754.644 ... 5764.596 ? ... 5767.416: 5767.539: ... 5793.300: 5826.360: ... ... ... ... ... 5867.640: 5867.780: 5867.890 ? 5875.615 5879.080 ? 5889.780: 5889.951 5891.600: 5895.924: ... 5927.820 5931.790 5940.240 5941.650 5944.960 ? 5952.390 5957.560 5958.385 5958.584 5958.640 5978.930 5990.980 ? 6013.160 ? 6013.210 ? 6019.890 ? 6046.233 ? 6046.438 6046.495 6074.338 6096.300 ? 6096.320

À16.7 2.2 0.8 .. . 5.8 .. . À2.2 4.1 .. . 5.1 À9.3 .. . .. . .. . .. . .. . À4.4 2.7 8.4 À1.8 2.4 À9.2 À0.4 1.8 À5.1 .. . 0.9 0.9 À1.2 À0.7 1.8 0.3 À4.7 À12.1 À2.1 0.8 À4.4 À5.6 7.5 10.0 3.4 À11.8 À1.6 1.2 0.7 5.2 6.2 a4D 3d6.(5D).4s 2Do 2s2.2p2.(3P).4p 1D 2s2.2p2 ... 4Po 3s2.3p2.(3P).5p ... 4Do 3s2.3p2.(3P).5p b4P 3d6.(3P4).4s ... 4Fo 2s.2p.(3Po).4d 4Do 3s2.3p2.(3P).5p ... ... ... ... ... 3D 3s.4d 3D 3s.4d 3D 3s.4d 3Po 1s.2p 3Fo 2s2.2p.(2Po).4d 2D 2s2.3d 2S 3s 2D 2s2.3d 2S 3s ... 3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p 3P 2s2.2p.(2Po).3p 3Fo 2s2.2p.(2Po).4d 3P 2s2.2p.(2Po).3p 2Po 3s2.(1S).4p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 2Po 3s2.(1S).4p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3D 2s2.2p.(2Po).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3/2[3/2]o 2p5.(2Po<3/2>).3s 3P4 3d6 3Do 2s.2p2.(4P).3p b2P 3d6.(3P4).4s 2F 2s2.2p2.(3P).5d 1S 2s2.2p2 ... 4P 3s2.3p2.(3P).6d ... 4P 3s2.3p2.(3P).6d c2D 3d6.(1D4).4s ... 4G 2s.2p.(3Po).6f 4P 3s2.3p2.(3P).7s ... ... ... ... ... 3Fo 3s.6f 3Fo 3s.6f 3Fo 3s.6f 3D 1s.3d 2[5/2] 2s2.2p.(2Po<3/2>).6f.D 2Po 2s2.4p 2Po 3p 2Po 2s2.4p 2Po 3p ... 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).3d 2[7/2] 2s2.2p.(2Po<3/2>).6f.G 3Do 2s2.2p.(2Po).3d 2S 3s2.(1S).5s 3Do 2s2.2p3.(4So).5d 3Do 2s2.2p3.(4So).5d 3Do 2s2.2p3.(4So).5d 2S 3s2.(1S).5s 3Do 2s2.2p.(2Po).5d 3Po 2s2.2p.(2Po).6s 3Fo 2s2.2p.(2Po).5d 3Fo 2s2.2p.(2Po).5d 3So 2s2.2p3.(4So).6s 3So 2s2.2p3.(4So).6s 3So 2s2.2p3.(4So).6s 3/2[1/2] 2p5.(2Po<3/2>).3p 1D4 3d6 3F 2s.2p2.(4P).3d 2.5 2.5 2.0 ... 0.5 ... 3.5 2.5 ... 1.5 1.5 ... ... ... ... ... 3.0 2.0 1.0 2.0 2.0 2.5 0.5 1.5 0.5 ... 0.0 1.0 1.0 2.0 4.0 2.0 0.5 1.0 2.0 0.0 1.5 2.0 3.0 3.0 2.0 1.0 2.0 0.0 1 2.0 3.0

1.5 3.5 0.0 ... 1.5 ... 2.5 2.5 ... 2.5 2.5 ... ... ... ... ... 2.0 2.0 2.0 3.0 2.0 1.5 1.5 0.5 0.5 ... 1.0 2.0 1.0 3.0 3.0 2.0 0.5 **** **** **** 0.5 3.0 2.0 4.0 2.0 1.0 1.0 1.0 0 2.0 4.0

2/0 0/0 0/0 ... 6/0 ... 2/0 3/0 ... 8/0 5/0 ... ... ... ... ... 4/0 5/0 5/0 2/0 ... 2/0 1/0 2/0 1/0 ... 5/4 5/4 5/4 2/2 ... 4/3 1/1 2/0 1/0 2/0 1/1 4/0 2/0 2/0 5/0 2/0 1/0 2/0 ... 1/0 2/0


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 9.0 11.2 12.1 127.3 21.5 7.0 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0011 0.0028 0.0019 0.0253 0.0033 0.0018

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

6098.538 6130.475 6147.234 6151.336

....... ....... ....... .......

21.5 41.7 17.7 26.7

0.0014 0.0034 0.0023 0.0306

6154.406....... 6155.983.......

24.5 18.9

0.0040 0.0021

6156.785....... 0.0042 19.9

29.2

0.0043

0.0036

19.9

6158.143.......

35.3

0.0051

177
0.0107 0.0010 0.0013 0.0584 0.0285 53.6007 312.0430 0.5374 162.9287 0.0028 3.8721 0.0013 0.0020 75.5 5.4 8.7 93.5 70.6 10430.0 14100.0 870.5 11370.0 11.7 2346.0 7.7 7.8

6161.778 6167.678 6170.170 6173.331 6176.066 6250.704 6257.117 6259.482 6300.405 6312.107 6325.191 6332.889 6334.480 6347.193 6363.886 6371.418 6379.649 6382.988 6392.496

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

41.1 36.4 15.5 13.6 15.0 14.6 19.9 17.8 56.2 23.6 22.2 19.5 22.0 47.7 56.7 31.0 25.5 44.1 17.6

0.0048 0.0030 0.0011 0.0027 0.0014 0.0018 0.0063 0.0102 2.6718 1.0534 0.0032 0.0047 0.0032 0.0634 0.9389 0.0537 0.0011 0.0024 0.0012

0.0039 0.0025 0.0009 0.0023 0.0012 0.0015 0.0052 0.0084 2.1753 0.8566 0.0026 0.0038 0.0026 0.0513 0.7594 0.0434 0.0009 0.0020 0.0009

21.1 15.0 8.7 20.1 8.2 15.6 99999.0 63.7 1977.0 590.2 8.7 21.1 14.4 83.3 485.2 198.3 10.7 16.1 6.2

6402.269 6454.393 6455.997 6461.848 6527.257 6548.096 6562.804 6578.050 6583.467 6610.650 6678.153 6699.344 6704.604

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

21.9 22.4 19.3 18.6 29.3 39.8 31.3 18.3 40.2 25.0 21.6 20.1 43.8

0.0133 0.0013 0.0016 0.0730 0.0358 67.5573 393.8931 0.6794 206.1069 0.0035 4.9466 0.0016 0.0026

4A .. . .. . 3A 7D .. . 1A 1A 1A 1A 1A 1A 2B 3C 5B 6D 1A 1A 2A 5B 4A 4A 0A 1A 7A .. . 2A 2A 0A 1A 3A 2A 7A 9C 3A 3A 2A 6C 0A 0A 3A 2A 0A 2A 2A .. . .. .

C ii ... ... C ii C ii ... Oi Oi Oi Oi Oi Oi Oi Oi [Cl ii] N ii N ii N ii N ii C ii C ii C ii [O i] [S iii] [Fe ii] ... Ne i Si ii [O i] Si ii O ii Ne i [Fe ii] C ii Ne i Oi Oi C ii [N ii] [N ii] Hi C ii [N ii] N ii He i He i He i

6098.510 ... ... 6151.270 6151.540 ... 6155.961 6155.970 6155.989 6156.737 6156.778 6158.150 6158.172 6158.188 6161.830: 6167.750: 6170.160 6173.310 6176.050 ? 6250.760: 6257.180 6259.560 6300.304 6312.100 6325.501: ... 6334.429 6347.110 6363.777 6371.370 6379.584 ? 6382.992 6392.698: 6393.000 ? 6402.249 ? 6454.444 6455.977 6461.950: 6527.240 6548.040 6562.800 6578.050 6583.460 6610.560 6678.152 6699.315 6704.653

À1.4 .. . .. . À3.2 10.0 .. . À1.1 À0.6 0.3 À2.4 À0.4 0.3 1.4 2.2 2.5 3.5 À0.5 À1.0 À0.8 2.7 3.0 3.7 À4.8 À0.3 14.7 .. . À2.4 À3.9 À5.2 À2.3 À3.1 0.2 9.5 23.6 À1.0 2.4 À0.9 4.7 À0.8 À2.6 À0.2 0.0 À0.3 À4.1 0.0 À1.3 2.2 2P 2s.2p.(3Po).3p ... ... 2D 2s2.4d 2D 2s2.4d ... 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 1D 3s2.3p4 3Fo 2s2.2p.(2Po).3d 3Fo 2s2.2p.(2Po).3d 3Fo 2s2.2p.(2Po).3d 3Do 2s2.2p.(2Po).4d 2Do 2s.2p.(3Po).3d 2Po 2s2.4p 2Po 2s2.4p 3P 2s2.2p4 1D 3s2.3p2 b4P 3d6.(3P4).4s ... 3/2[3/2]o 2p5.(2Po<3/2>).3s 2S 3s2.(1S).4s 3P 2s2.2p4 2S 3s2.(1S).4s 2[3]o 2s2.2p2.(3P).4f.D 3/2[3/2]o 2p5.(2Po<3/2>).3s a2G 3d7 4D 2s.2p.(3Po).4p 2[3/2]o 2p5.(2Po<3/2>).3s 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 2Fo 2s2.4f 3P 2s2.2p2 3P 2s2.2p2 2 2* 2S 2s2.3s 3P 2s2.2p2 1D 2s2.2p.(2Po).3p 1Po 1s.2p 3S 1s.3s 3S 1s.3s 2Do 2s.2p.(3Po).3d ... ... 2Fo 2s2.6f 2Fo 2s2.6f ... 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 5Do 2s2.2p3.(4So).4d 1S 3s2.3p4 3D 2s2.2p.(2Po).4p 3D 2s2.2p.(2Po).4p 3D 2s2.2p.(2Po).4p 2[7/2] 2s2.2p.(2Po<1/2>).6f.F 2P 2s.2p.(3Po).4p 2D 2s2.5d 2D 2s2.5d 1D 2s2.2p4 1S 3s2.3p2 c2D 3d6.(1D4).4s ... 3/2[5/2] 2p5.(2Po<3/2>).3p 2Po 3s2.(1S).4p 1D 2s2.2p4 2Po 3s2.(1S).4p 2[2] 2s2.2p2.(3P<2>).6g 3/2[3/2] 2p5.(2Po<3/2>).3p b4D 3d6.(3D).4s 4Fo 2s.2p.(3Po).5d 2[5/2] 2p5.(2Po<3/2>).3p 5So 2s2.2p3.(4So).5s 5So 2s2.2p3.(4So).5s 2G 2s2.6g 1D 2s2.2p2 1D 2s2.2p2 3 3* 2Po 2s2.3p 1D 2s2.2p2 1Fo 2s2.2p.(2Po).3d 1D 1s.3d 3Po 1s.27p 3Po 1s.26p 1.5 ... ... 1.5 2.5 ... 1.0 1.0 1.0 2.0 2.0 3.0 3.0 3.0 2.0 4.0 2.0 3.0 3.0 2.5 0.5 1.5 2.0 2.0 0.5 2 ... 0.5 1.0 0.5 2.5 1 4.5 2.5 2.0 2.0 3.0 **** 0.0 1.0 **** 0.5 2.0 2.0 1.0 **** ****

2.5 ... ... **** **** ... 0.0 1.0 2.0 1.0 3.0 2.0 3.0 4.0 0.0 3.0 1.0 2.0 3.0 1.5 1.5 2.5 2.0 0.0 1.5 2 ... 1.5 2.0 0.5 **** 1 3.5 2.5 3.0 2.0 2.0 **** 2.0 2.0 **** 1.5 2.0 3.0 2.0 **** ****

2/0 ... ... 1/0 1/0 ... 8/5 8/4 7/4 8/6 5/3 5/3 4/2 2/1 0/0 2/0 5/2 5/2 ... 2/0 2/1 2/1 1/1 0/0 4/0 ... ... 1/1 1/1 1/1 ... ... 3/0 7/0 ... 2/1 1/1 ... 2/2 1/1 0/0 1/0 1/1 0/0 0/0 ... ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 9.0 1437.0 99999.0 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0023 2.0831 0.0071

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

6710.658....... 6716.523....... 6723.459.......

54.0 52.0 22.3

0.0030 2.6718 0.0092

6724.226.......

18.0

0.0040

0.0031

99999.0

178
0.0117 0.0849 72.5 14.2 0.0036 0.0048 0.0123 7.0593 0.0043 0.0024 0.0028 0.0052 31.4 14.7 16.4 34.6 29.9 38.5 63.3 3291.0

6725.248 6730.893 6744.386 6755.955 6769.672 6779.954 6780.626 6783.937 6785.783 6787.361 6791.466 6800.678 6804.950 6809.953 6821.403 6826.875 6829.900 6834.197 6836.444 6856.005 6929.430 6930.769 6934.033

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

17.2 52.7 52.3 18.2 21.3 17.9 17.7 19.1 20.8 46.1 19.2 17.7 19.8 24.6 22.5 21.1 16.6 31.9 33.5 20.0 20.4 18.0 16.4

0.0020 5.6794 0.0064 0.0028 0.0033 0.0141 0.0071 0.0028 0.0047 0.0095 0.0085 0.0065 0.0043 0.0027 0.0027 0.0429 0.0014 0.0021 0.0014 0.0065 0.0024 0.0044 0.0095

0.0015 4.4215 0.0050 0.0022 0.0026 0.0109 0.0055 0.0022 0.0037 0.0073 0.0066 0.0050 0.0033 0.0021 0.0021 0.0331 0.0010 0.0016 0.0011 0.0050 0.0019 0.0034 0.0072

99999.0 2317.0 27.0 16.5 21.6 99999.0 99999.0 12.4 25.9 45.5 51.5 33.1 29.2 12.6 13.9 99999.0 3.4 6.5 3.5 46.7 17.7 25.8 55.3

6989.531....... 7002.204.......

21.9 56.5

0.0154 0.1122

7032.469 7050.047 7062.334 7065.228

....... ....... ....... .......

24.2 53.3 19.2 27.3

0.0048 0.0064 0.0163 9.3893

7080.387 7099.927 7102.675 7112.965

....... ....... ....... .......

42.4 63.0 21.2 35.4

0.0058 0.0033 0.0037 0.0069

.. . 0A 8 6C 4A 6A 8D .. . 0A .. . .. . .. . 1A 0A 4A .. . 6D 1A 0A .. . 4A 3A .. . 7A 5B .. . 2A 3A .. . 8C 4A 1A 8 7 4A 4A 5D 5D 2A .. . 1A 3A 4B .. . .. . 3A 5B

He i [S ii] C ii C ii C ii C ii C ii ... [S ii] He i He i He i C ii C ii C ii He i C ii C ii C ii He i N ii N ii ... [Fe ii] N ii ... He i Ne i ... [Fe ii] He i He i Oi Oi Oi Oi Oi Oi Ne i ... He i He i He i ... ... [Ni ii] C ii

6710.656 6716.440 6723.130 6723.320 6723.450 6724.300 6724.560 ? ... 6730.810 6744.098 ? 6755.847 6769.548 6779.940 6780.600 6783.910 6785.676 6787.210: 6791.470 6800.680 6804.840 6809.970 6821.410 ? ... 6830.033: 6834.090: ... 6855.883 6929.468 ... 6933.660 ? 6933.890 6989.450 7001.899 7001.922 7002.173 7002.196 7002.230 7002.250 7032.413 ? ... 7062.260 7065.179 7065.217 ... ... 7102.650 ? 7113.040:

À0.1 À3.7 À14.7 À6.2 À0.4 3.3 14.9 .. . À3.7 À12.8 À4.8 À5.5 À0.6 À1.1 À1.2 À4.7 À6.7 0.2 0.1 À4.9 0.8 0.3 .. . 5.9 À4.7 .. . À5.3 1.6 .. . À16.1 À6.2 À3.5 À13.1 À12.1 À1.3 À0.4 1.1 2.0 À2.4 .. . À3.2 À2.1 À0.5 .. . .. . À1.1 3.2 3S 1s.3s 4So 3s2.3p3 2D 2s2.4d 2D 2s2.4d 2D 2s2.4d 4Do 2s.2p.(3Po).4d 4D 2s.2p.(3Po).3p ... 4So 3s2.3p3 3S 1s.3s 3S 1s.3s 3S 1s.3s 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 3S 1s.3s 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 4Po 2s.2p.(3Po).3s 3S 1s.3s 3Po 2s2.2p.(2Po).3d 5Fo 2s.2p2.(4P).4f ... a4D 3d6.(5D).4s 3Po 2s2.2p.(2Po).3d ... 3S 1s.3s 1/2[1/2]o 2p5.(2Po<1/2>).3s ... a4D 3d6.(5D).4s 3S 1s.3s 3S 1s.3s 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 2[3/2]o 2p5.(2Po<3/2>).3s ... 3S 1s.3s 3Po 1s.2p 3Po 1s.2p ... ... 2F 3d8.(3F).4s 4D 2s.2p.(3Po).3p 3Po 1s.25p 2Do 3s2.3p3 2Po 2s2.6p 2Po 2s2.6p 2Po 2s2.6p 4D 2s.2p.(3Po).6p 4Do 2s.2p.(3Po).3d ... 2Do 3s2.3p3 3Po 1s.21p 3Po 1s.20p 3Po 1s.19p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 3Po 1s.18p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 3Po 1s.17p 3S 2s2.2p.(2Po).4p 5F 2s.2p2.(4P).6d ... a6S 3d5.4s2 3S 2s2.2p.(2Po).4p ... 3Po 1s.15p 3/2[3/2] 2p5.(2Po<3/2>).3p ... b4F 3d6.(3F4).4s 3Po 1s.13p 3Po 1s.12p 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 2[1/2] 2p5.(2Po<3/2>).3p ... 3Po 1s.11p 3S 1s.3s 3S 1s.3s ... ... 2P 3d8.(3P).4s 4Fo 2s.2p.(3Po).3d **** 1.5 1.5 1.5 2.5 1.5 0.5 ... 1.5 **** **** **** 1.5 0.5 2.5 **** 0.5 1.5 2.5 **** 2.0 4.0 ... 1.5 1.0 ... 1.0 1 ... 2.5 1.0 1.0 1.0 1.0 2.0 2.0 2.0 0.0 2.0 ... 1.0 2.0 1.0 ... ... 2.5 1.5

**** 2.5 1.5 0.5 1.5 0.5 1.5 ... 1.5 **** **** **** 2.5 1.5 3.5 **** 0.5 1.5 2.5 **** 1.0 **** ... 2.5 1.0 ... **** 2 ... 3.5 **** **** 1.0 2.0 1.0 2.0 3.0 1.0 1.0 ... **** 1.0 1.0 ... ... 1.5 2.5

... 1/1 2/0 2/0 2/0 9/0 9/0 ... 1/1 ... ... ... 5/4 7/4 2/0 ... 7/0 7/4 4/3 ... 1/0 1/0 ... 3/0 2/0 ... 0/0 ... ... 5/0 0/0 0/0 5/0 5/0 4/0 4/0 2/0 5/0 ... ... 0/0 1/0 2/0 ... ... 1/0 8/1


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 30.8 41.5 2973.0 99999.0 99999.0 141.7 255.3 99999.0 15.5 99999.0 15.0 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0043 0.0070 8.2608 0.0054 0.0034 0.0219 0.1692 0.4673 0.0489 0.0135 0.1564

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

7115.642....... 7120.052.......

21.1 42.1

0.0057 0.0093

7135.744 7155.557 7156.637 7160.559 7231.329 7236.414 7237.145 7252.759 7254.380

....... ....... ....... ....... ....... ....... ....... ....... .......

28.9 27.9 20.9 21.3 23.6 21.1 16.6 31.3 69.3

11.0687 0.0072 0.0045 0.0295 0.2290 0.6328 0.0663 0.0182 0.2122

179
0.0224 0.0122 0.0033 0.0055 0.0103 0.0092 0.0010 0.0015 0.0038 0.0026 0.0057 0.0024 0.0030 7.5 8.6 19.0 10.0 36.6 18.2 17.2 128.2 122.7 41.5 23.9 15.7 128.2

7281.348 7291.573 7298.019 7319.087 7320.135 7329.679 7330.754 7378.035 7391.385 7423.733 7442.351 7452.706 7459.251 7468.457 7469.554 7499.977 7505.008

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

26.1 34.6 24.3 34.7 27.4 28.9 27.3 66.3 36.1 58.3 57.7 58.8 21.1 59.2 21.5 21.7 17.5

1.0763 0.0168 0.0288 5.0382 13.7405 8.0153 7.7099 0.0067 0.0018 0.0215 0.0502 0.0041 0.0065 0.0809 0.0114 0.0587 0.0066

0.7911 0.0123 0.0211 3.6886 10.0586 5.8617 5.6377 0.0049 0.0013 0.0156 0.0363 0.0029 0.0047 0.0583 0.0082 0.0422 0.0048

323.1 77.8 116.9 2161.0 6483.0 3856.0 3856.0 21.5 99999.0 119.4 219.9 16.4 26.7 99999.0 99999.0 38.7 45.9

7505.392 7507.456 7509.767 7513.379 7519.431

....... ....... ....... ....... .......

47.3 43.2 16.6 43.5 19.0

0.0311 0.0169 0.0046 0.0076 0.0144

7519.948.......

17.3

0.0129

7524.101 7525.791 7530.460 7533.509 7542.126 7551.525 7562.471

....... ....... ....... ....... ....... ....... .......

17.8 45.6 35.9 42.8 44.1 42.1 31.9

0.0014 0.0020 0.0053 0.0037 0.0079 0.0033 0.0042

3B 8 5B 2A 7A 3A 2A 3A 2A .. . 4A 7D 4B 7D 2A 2A 2A 4A 4A 1A 1A 3A .. . 1A 1A 4A .. . 3A 2A 2A 6B 6C 5A 5A .. . .. . 2A .. . 3A 5 4A .. . 6A .. . .. . .. . .. .

C ii C ii C ii [Ar iii] [Fe ii] Oi He i C ii C ii C ii O ii Oi Oi Oi He i [Ca ii] He i [O ii] [O ii] [O ii] [O ii] [Ni ii] ... Ni Ni [Fe ii] ... Ni O ii He i O ii C ii C ii [Ni i] ... He i C ii He i C ii C ii C ii He i C ii He i He i He i He i

7115.630 7119.760 7119.910 7135.800 7155.160: 7156.701 ? 7160.580 7231.340 7236.420 7237.170 7252.717 7254.154 7254.448 7254.531 7281.351 7291.470 ? 7298.030 7318.920 7319.990 7329.660 7330.730 7377.830 ... 7423.641 7442.298 7452.540 ... 7468.312 7469.530 ? 7499.846 7504.960 ? 7505.260 ? 7505.260 ? 7507.380 ? ... 7513.340 ? 7519.490 7519.299 ? 7519.930 7520.200: 7524.370 7525.969 7530.570: 7533.469 7541.944 ? 7551.571 7562.569

À0.5 À12.3 À6.0 2.3 À16.6 2.7 0.9 0.4 0.2 1.0 À1.7 À9.3 2.8 6.2 0.1 À4.2 0.4 À6.8 À5.9 À0.8 À1.0 À8.3 .. . À3.7 À2.1 À6.7 .. . À5.8 À1.0 À5.2 À1.9 10.1 À5.3 À3.0 .. . À1.6 2.4 À5.3 À0.7 10.1 10.7 7.1 4.4 À1.6 À7.2 1.8 3.9 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 4D 2s.2p.(3Po).3p 3P 3s2.3p4 a4F 3d7 1Do 2s2.2p3.(2Do).3s 3S 1s.3s 2Po 2s2.3p 2Po 2s2.3p 2Po 2s2.3p 4P 2s2.2p2.(3P).3d 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 1Po 1s.2p 2S 3p6.(1S).4s 3S 1s.3s 2Do 2s2.2p3 2Do 2s2.2p3 2Do 2s2.2p3 2Do 2s2.2p3 2D 3d9 ... 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s a4F 3d7 ... 4P 2s2.2p2.(3P).3s 2G 2s2.2p2.(1D).3d 3S 1s.3s 2G 2s2.2p2.(1D).3d 2Po 2s2.5p 2Po 2s2.5p 3D 3d9.(2D).4s ... 1S 1s.3s 2Po 2p3 1S 1s.3s 2Po 2p3 2Po 2s2.5p 2Po 2s2.5p 1S 1s.3s 2Po 2p3 1S 1s.3s 1S 1s.3s 1S 1s.3s 1S 1s.3s 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d 4Fo 2s.2p.(3Po).3d 1D 3s2.3p4 a2G 3d7 1D 2s2.2p3.(2Do).3p 3Po 1s.10p 2D 2s2.3d 2D 2s2.3d 2D 2s2.3d 4Po 2s2.2p2.(3P).4p 3So 2s2.2p3.(4So).5s 3So 2s2.2p3.(4So).5s 3So 2s2.2p3.(4So).5s 1S 1s.3s 2D 3p6.(1S).3d 3Po 1s.9p 2Po 2s2.2p3 2Po 2s2.2p3 2Po 2s2.2p3 2Po 2s2.2p3 2F 3d8.(3F).4s ... 4So 2s2.2p2.(3P).3p 4So 2s2.2p2.(3P).3p a2G 3d7 ... 4So 2s2.2p2.(3P).3p 2[3]o 2s2.2p2.(3P).5f.F 3Po 1s.8p 2[5] 2s2.2p2.(3P).5f.G 2D 2s.2p.(3Po).3p 2D 2s.2p.(3Po).3p 1D 3d8.(1D).4s2 ... 1Po 1s.28p 2P 2s.2p.(3Po).3p 1Po 1s.27p 2P 2s.2p.(3Po).3p 2D 2s.2p.(3Po).3p 2D 2s.2p.(3Po).3p 1Po 1s.26p 2P 2s.2p.(3Po).3p 1Po 1s.25p 1Po 1s.24p 1Po 1s.23p 1Po 1s.22p 2.5 1.5 3.5 2.0 4.5 2.0 1.0 0.5 1.5 1.5 1.5 1.0 2.0 0.0 1.0 0.5 1.0 2.5 2.5 1.5 1.5 2.5 ... 0.5 1.5 3.5 ... 2.5 4.5 **** 3.5 1.5 1.5 3.0 ... **** 1.5 **** 0.5 0.5 1.5 **** 1.5 **** **** **** ****

3.5 1.5 4.5 2.0 4.5 2.0 **** 1.5 2.5 1.5 0.5 1.0 1.0 1.0 0.0 2.5 **** 0.5 1.5 0.5 1.5 3.5 ... 1.5 1.5 4.5 ... 1.5 3.5 **** 4.5 2.5 2.5 2.0 ... **** 1.5 **** 0.5 1.5 1.5 **** 0.5 **** **** **** ****

5/1 8/0 2/0 1/1 3/0 0/0 0/0 2/1 2/1 ... 6/0 2/0 1/0 2/0 0/0 1/0 0/0 3/1 2/0 2/1 2/1 1/0 ... 2/2 2/2 4/0 ... 1/1 ... ... ... 2/1 2/0 1/0 ... ... 3/2 ... 3/1 2/2 2/2 ... 3/1 ... ... ... ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 99999.0 40.7 9.4 20.2 37.7 1789.0 99999.0 157.4 148.9 148.9 45.3 80.5 28.7 99999.0 99999.0 21.8 21.7 158.7 .. . .. . .. . .. . .. . 1A 1A 2A 1A 1A 2A 2A 3A 1A 2A 1A ... ... ... ... IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0015 0.0036 0.0026 0.0033 0.0025 2.1967 0.0067 0.0352 0.0215 0.0130 0.0061 0.0627 0.0036 0.0289 0.0134 0.0037 0.0009 0.0224

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

7569.057 7574.071 7575.264 7589.851 7679.594 7751.074 7757.635 7771.921 7774.170 7775.372 7811.659 7816.122 7860.551 7876.089 7877.066 7880.901 7890.641 7896.364

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

40.5 15.3 41.1 33.1 28.4 28.3 23.2 38.4 27.1 28.6 23.1 20.1 54.2 26.5 53.8 21.0 21.7 56.8

0.0022 0.0051 0.0036 0.0047 0.0036 3.1374 0.0096 0.0504 0.0308 0.0185 0.0088 0.0901 0.0052 0.0418 0.0194 0.0053 0.0013 0.0324

180
0.0027 0.0032 0.0028 0.0039 0.0006 0.0054 0.0043 0.0045 0.0059 0.0007 0.0082 0.0058 0.0079 0.0067 0.0026 0.0036 0.0133 99999.0 21.4 36.2 82.9 33.3 33.2 22.2 18.5 9.1 31.4 28.0 34.5 43.1 8.0 56.7 36.9 99999.0

7902.149 7906.002 7924.546 7932.977 7944.564 7950.773

....... ....... ....... ....... ....... .......

20.0 29.5 16.0 22.8 18.7 26.2

0.0019 0.0049 0.0019 0.0025 0.0033 0.0052

0.0013 0.0034 0.0013 0.0017 0.0022 0.0035

9.6 11.2 16.3 7.7 18.0 39.5

7952.826 7971.645 7973.190 7985.473 7995.554 7999.722 8015.967 8035.090 8057.497 8064.893 8084.272 8093.881 8115.313

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

30.6 22.4 26.1 26.5 39.8 38.6 19.5 17.6 21.2 16.1 22.6 67.6 37.0

0.0039 0.0047 0.0040 0.0057 0.0009 0.0079 0.0063 0.0066 0.0086 0.0011 0.0121 0.0086 0.0117

8116.451.......

18.5

0.0098

8120.188.......

19.7

0.0039

8140.560....... 8155.505.......

13.0 19.3

0.0053 0.0197

*C 3A .. . .. . .. . .. . .. . 5B 6D 6D .. . 1A .. . .. . .. . .. . .. . .. . .. . .. . .. . 5A 5B 6D 4A .. . 3A 8 .. . 4A

... ... He i He i He i [Ar iii] He i Oi Oi Oi He i He i C ii [P ii] Mg ii He i [Ni iii] Mg ii Mg ii ... ... He i ... He i Oi Fe i Fe i He i He i He i He i ... He i He i He i He i ... He i He i Mg ii Mg ii O ii He i Fe i Mg ii ... He i 1S 1s.3s 1S 1s.3s 1S 1s.3s 3P 3s2.3p4 1S 1s.3s 5So 2s2.2p3.(4So).3s 5So 2s2.2p3.(4So).3s 5So 2s2.2p3.(4So).3s 1S 1s.3s 3S 1s.3s 2D 2s2.5d 1D 3s2.3p2 2Po 4p 1S 1s.3s 3F 3d8 2Po 4p 2Po 4p ... ... 3Po 1s.3p ... 3Po 1s.3p 3Do 2s2.2p3.(2Do).3s w5Fo 3d6.(3F).4s.4p.(3Po) w5Fo 3d6.(3F).4s.4p.(3Po) 3Po 1s.3p 1S 1s.3s 3Po 1s.3p 3Po 1s.3p ... 3Po 1s.3p 3Po 1s.3p 3Po 1s.3p 3Po 1s.3p ... 3Po 1s.3p 1S 1s.3s 2D 4d 2D 4d 2P 2s2.2p2.(3P).4d 3Po 1s.3p w5Fo 3d6.(3F).4s.4p.(3Po) 2D 4d ... 3Po 1s.3p 1Po 1s.21p 1Po 1s.20p 1Po 1s.16p 1D 3s2.3p4 1Po 1s.14p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 1Po 1s.13p 3Po 1s.7p 2Fo 2s2.9f 1S 3s2.3p2 2D 4d 1Po 1s.12p 1D 3d8 2D 4d 2D 4d ... ... 3D 1s.29d ... 3D 1s.26d 3F 2s2.2p3.(2Do).3p 5F 3d6.4s.(6D).5d 5F 3d6.4s.(6D).5d 3D 1s.25d 1Po 1s.11p 3D 1s.23d 3D 1s.22d ... 3D 1s.21d 3D 1s.20d 3D 1s.19d 3D 1s.18d ... 3D 1s.17d 1Po 1s.10p 2Po 6p 2Po 6p 2Po 2s2.2p2.(1D).4p 3D 1s.16d 5F 3d6.4s.(6D).5d 2Po 6p ... 3D 1s.15d

... ... 7575.214 7589.854 7679.627 7751.100 7757.620 7771.944 7774.166 7775.387 7811.680 7816.122 7860.500 ? 7875.990 7877.050 7880.890 7889.900 7896.040 ? 7896.370 ... ... 7924.521 ... 7944.580 7950.803: 7950.786 ? 7950.814 ? 7952.953 7971.620 7973.166 7985.452 ... 7999.583 ? 8015.948 8035.047 8057.551 ... 8084.292 8094.080: 8115.230: 8115.570: 8116.490 8116.426 8120.045 ? 8120.440 ? ... 8155.590

.. . .. . 2.0 0.1 1.3 1.0 À0.6 0.9 À0.2 0.6 0.8 0.0 À1.9 À3.8 À0.6 À0.4 À28.2 À12.3 0.2 .. . .. . À0.9 .. . 0.6 1.1 0.5 1.5 4.8 À0.9 À0.9 À0.8 .. . À5.2 À0.7 À1.6 2.0 .. . 0.7 7.4 À3.1 9.5 1.4 À0.9 À5.3 9.3 .. . 3.1

... ... **** **** **** 1.0 0.0 2.0 2.0 2.0 0.0 **** 2.5 2.0 0.5 0.0 3.0 1.5 1.5 ... ... **** ... **** 2.0 3.0 1.0 **** 0.0 **** **** ... **** **** **** **** ... **** 0.0 2.5 1.5 1.5 **** 4.0 1.5 ... ****

... ... **** **** **** 2.0 1.0 3.0 2.0 1.0 1.0 **** **** 0.0 1.5 1.0 2.0 1.5 2.5 ... ... **** ... **** 3.0 4.0 2.0 **** 1.0 **** **** ... **** **** **** **** ... **** 1.0 1.5 1.5 1.5 **** 3.0 0.5 ... ****

... ... ... ... ... 1/1 0/0 1/1 2/2 2/2 0/0 ... 1/0 0/0 2/1 0/0 1/0 2/0 2/1 ... ... ... ... ... 5/0 7/1 */1 ... 0/0 ... ... ... ... ... ... ... ... ... 0/0 2/0 2/1 3/0 ... 7/1 2/0 ... ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 168.0 152.9 138.6 93.3 92.0 37.9 304.1 347.8 73.5 143.6 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0152 0.0381 0.0131 0.0137 0.0198 0.0026 0.0598 0.0623 0.0117 0.0243

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

8185.270....... 8188.451.......

20.8 51.1

0.0227 0.0567

8200.503....... 8203.844....... 8210.965.......

51.5 22.9 45.4

0.0195 0.0204 0.0295

8213.890 8216.298 8223.218 8233.205 8234.505

....... ....... ....... ....... .......

47.3 62.2 50.4 18.5 27.7

0.0039 0.0893 0.0931 0.0175 0.0363

181
0.0075 0.0783 0.0752 0.0930 0.0889 0.0041 0.0101 0.0691 0.0031 0.1273 0.1647 0.0038 40.8 234.7 99999.0 67.0 21.2 22.6 26.4 22.9 99999.0 99999.0 99999.0 16.8

8235.769 8237.116 8238.620 8240.199 8241.366 8242.031 8242.508 8243.704 8245.639 8247.727 8249.995 8252.396 8254.352 8255.102 8256.551 8257.581 8258.116 8260.907 8264.339

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

18.2 17.2 15.6 21.0 6.5 8.1 53.9 12.6 25.7 26.8 27.9 30.0 7.7 22.5 13.4 18.9 20.6 28.3 32.8

0.0181 0.0221 0.0184 0.0337 0.0010 0.0402 0.0824 0.0635 0.0643 0.0683 0.0779 0.0947 0.0024 0.0687 0.0018 0.0321 0.0455 0.1061 0.1405

0.0121 0.0147 0.0123 0.0225 0.0006 0.0269 0.0551 0.0424 0.0429 0.0456 0.0520 0.0632 0.0016 0.0458 0.0012 0.0214 0.0303 0.0707 0.0936

67.5 134.0 116.1 147.6 99999.0 99999.0 99999.0 99999.0 250.2 266.5 260.3 351.0 99999.0 372.5 99999.0 99999.0 99999.0 404.4 22.6

8265.723 8267.938 8271.803 8276.325 8281.148 8283.315 8285.688 8286.579 8290.520

....... ....... ....... ....... ....... ....... ....... ....... .......

18.0 31.0 35.7 44.5 47.8 22.7 22.2 34.7 19.5

0.0112 0.1176 0.1130 0.1397 0.1336 0.0061 0.0152 0.1038 0.0046

8298.882.......

28.5

0.1916

8306.064....... 8307.803.......

30.5 18.5

0.2481 0.0057

7D 7D 4A 2A 3A 2A 6 4A 5B 1A 3A 4B 3A .. . .. . 4B 5A .. . .. . 4B .. . .. . .. . 2A 3A .. . 1A .. . 5A 3A 3A 2A 7B 1A 2A 5A 2A 2A .. . 4A 1A 7B .. . 2A .. . 4A .. .

Ni Ni O ii Ni He i Fe i Ni [Fe iii] Ni Ni Mg ii C ii Mg ii ... ... S ii Fe iii ... ... Ni Hi Hi Hi Hi Hi ... Hi He i Hi Hi Hi Hi He i He i Hi Hi Hi Hi He i He i Hi C ii He i Hi He i Hi He i

8184.862: 8188.012: 8188.520 8200.357 8203.850 8210.920 ? 8210.715: 8213.900 ? 8216.336: 8223.128 8233.190 ? 8234.300 ? 8234.640 ? ... ... 8238.590 8240.720 ? ... ... 8242.389 8243.698 8245.641 8247.730 8249.973 8252.398 ... 8255.018 8256.492 ? 8257.855 8257.855 8260.934 8264.284 8264.530: 8265.710 8267.936 8271.930 8276.308 8281.122 8283.306 8285.360 8286.431 8290.800: 8290.559 8298.834 8298.680 8306.112 8307.814

À15.0 À16.1 2.5 À5.3 0.2 À1.6 À9.1 0.4 1.4 À3.3 À0.5 À7.5 4.9 .. . .. . À1.1 18.9 .. . .. . À4.3 À0.2 0.1 0.1 À0.8 0.1 .. . À3.1 À2.1 10.0 À9.5 1.0 À2.0 6.9 À0.5 À0.1 4.6 À0.6 À1.0 À0.3 À11.9 À5.4 10.1 1.4 À1.7 À7.3 1.7 0.4 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 2P 2s2.2p2.(3P).4d 4P 2s2.2p2.(3P).3s 3Po 1s.3p w5Fo 3d6.(3F).4s.4p.(3Po) 4P 2s2.2p2.(3P).3s 3D 3d6 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 2G 5g 2G 2s2.5g 2Po 4p ... ... 2D 3s2.3p2.(1D).3d 5D 3d5.(6S).5d ... ... 4P 2s2.2p2.(3P).3s 3 3* 3 3* 3 3* 3 3* 3 3* ... 3 3* 3D 1s.3d 3 3* 3 3* 3 3* 3 3* 3Po 1s.3p 1S 1s.3s 3 3* 3 3* 3 3* 3 3* 3D 1s.3d 3Po 1s.3p 3 3* 2Po 2s2.5p 3D 1s.3d 3 3* 3D 1s.3d 3 3* 3D 1s.3d 4Po 2s2.2p2.(3P).3p 4Po 2s2.2p2.(3P).3p 2Po 2s2.2p2.(1D).4p 4Po 2s2.2p2.(3P).3p 3D 1s.14d 5F 3d6.4s.(6D).5d 4Po 2s2.2p2.(3P).3p 1F 3d6 4Po 2s2.2p2.(3P).3p 4Po 2s2.2p2.(3P).3p 2Ho 9h 2Fo 2s2.9f 2S 5s ... ... 2Po 3s2.3p2.(1S).4p 5Do 3d5.(4D).5p ... ... 4Po 2s2.2p2.(3P).3p 43 43* 42 42* 41 41* 40 40* 39 39* ... 38 38* 3Fo 1s.33f 37 37* 37 37* 36 36* 35 35* 3D 1s.13d 1Po 1s.9p 34 34* 33 33* 32 32* 31 31* 3Fo 1s.28f 3S 1s.13s 30 30* 2D 2s2.7d 3Fo 1s.27f 28 28* 3Fo 1s.26f 27 27* 3Fo 1s.25f 1.5 0.5 0.5 0.5 **** 3.0 1.5 1.0 2.5 1.5 **** **** 1.5 ... ... 1.5 2.0 ... ... 2.5 **** **** **** **** **** ... **** **** **** **** **** **** **** 0.0 **** **** **** **** **** **** **** 1.5 **** **** **** **** ****

2.5 1.5 1.5 0.5 **** 3.0 1.5 3.0 2.5 0.5 **** **** 0.5 ... ... 1.5 2.0 ... ... 1.5 **** **** **** **** **** ... **** **** **** **** **** **** **** 1.0 **** **** **** **** **** **** **** **** **** **** **** **** ****

4/1 6/1 3/1 6/3 ... 8/2 6/1 2/0 3/0 6/2 0/0 0/0 1/1 ... ... 2/0 9/2 ... ... 4/1 ... ... ... 0/0 0/0 ... 0/0 ... 0/0 0/0 0/0 0/0 ... 0/0 0/0 0/0 0/0 0/0 ... ... 0/0 1/0 ... 0/0 ... 0/0 ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 3 3* 3D 1s.3d c3F 3d8 3 3* 3D 1s.3d 3 3* 1D 4s.4d 3Po 1s.3p 3D 1s.3d 3 3* ... ... 292.4 44.1 21.5 446.1 51.4 532.0 27.0 99999.0 99999.0 217.8 99999.0 7.3 101.2 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.1722 0.0050 0.0020 0.2025 0.0055 0.2109 0.0052 0.0151 0.0072 0.2455 0.0060 0.0010 0.2861

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

8314.233 8318.141 8320.490 8323.418 8329.838 8333.773 8339.344 8342.203 8343.190 8345.556 8350.233 8352.471 8358.975

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

34.0 20.0 22.6 31.7 21.1 32.1 25.7 21.3 30.9 31.6 19.9 16.5 32.0

0.2595 0.0075 0.0031 0.3053 0.0083 0.3183 0.0079 0.0228 0.0108 0.3710 0.0090 0.0015 0.4328

182
0.4345 0.0232 1.1419 789.5 99999.0 99999.0 0.0136 0.0060 0.5050 0.0013 0.0108 0.0162 0.0068 0.0023 0.0019 0.0044 0.5983 0.0171 0.0211 118.4 49.9 15.2 99999.0 99999.0 226.3 147.4 195.2 99999.0 38.8 486.8 11.6 82.7

8361.738 8374.487 8376.548 8382.927 8392.397 8399.830 8405.417 8413.317 8419.009 8421.969 8424.347 8433.723

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

27.8 32.2 17.9 21.1 31.5 19.6 28.5 31.3 24.3 21.4 24.4 22.4

0.1847 0.4359 0.0100 0.0019 0.4863 0.0048 0.0015 0.5649 0.0021 0.0180 0.0070 0.0095

0.1221 0.2877 0.0066 0.0012 0.3205 0.0031 0.0010 0.3717 0.0014 0.0118 0.0046 0.0062

405.4 527.8 63.8 10.3 275.1 36.8 10.8 383.7 9.4 94.5 43.6 67.5

8437.908....... 8444.441....... 8446.549.......

31.5 20.6 68.1

0.6618 0.0353 1.7405

8451.153 8453.496 8467.251 8474.190 8480.830

....... ....... ....... ....... .......

21.0 25.8 32.0 19.4 27.9

0.0207 0.0091 0.7710 0.0019 0.0165

8486.261 8488.736 8495.350 8499.216 8500.039 8502.482 8518.027 8529.022

....... ....... ....... ....... ....... ....... ....... .......

21.7 21.4 27.5 8.1 27.1 32.4 19.1 21.0

0.0247 0.0104 0.0035 0.0028 0.0068 0.9160 0.0262 0.0324

3A .. . 7D 3A .. . 3A 4A 6C .. . 2A .. . .. . 3A .. . 1A 2A .. . .. . 2A .. . .. . 4B .. . .. . .. . 7B 6A 3A 3A * 7B 9C .. . .. . 2A .. . 1A 7B .. . .. . .. . .. . 8C 3A 2A .. . .. . 3 3* 3D 1s.3d 3S 1s.3s 3 3* 3D 1s.3d 1Po 1s.3p 3 3* 1D 1s.3d 1Po 1s.3p 3 3* 1Po 1s.3p 3D 1s.3d 1D 1s.3d 4Fo 2s.2p.(3Po).4d 2Do 3s2.3p3 3 3* 3Po 1s.3p 3So 2s2.2p3.(4So).3s 3So 2s2.2p3.(4So).3s 3So 2s2.2p3.(4So).3s 3D 1s.3d 1D 1s.3d 3 3* 1Po 1s.3p 3Po 1s.3p 2Do 3s2.3p3 3D 1s.3d 1D 1s.3d ... 1Po 1s.3p 2Do 3s2.3p3 3 3* 1S 1s.3s 1Po 1s.3p 3D 1s.3d

Hi He i Fe i Hi He i Hi Ca i He i He i Hi ... ... Hi He i He i Hi He i He i Hi He i He i Hi He i He i He i C ii [Cl iii] Hi He i Oi Oi Oi He i He i Hi He i He i [Cl iii] He i He i ... He i [Cl iii] Hi He i He i He i

8314.260 8318.137 8320.169 ? 8323.424 8329.867 8333.783 8339.210 ? 8342.330 8343.273 8345.552 ... ... 8359.003 8358.692 ? 8361.711 8374.475 8376.553 8382.921 8392.396 8399.811 8405.379 8413.317 8419.032 8421.959 8424.379 8433.900: 8434.000: 8437.955 8444.440 8446.247 8446.359 8446.758 8451.158 8453.596 8467.253 8474.172 8480.670 8481.200: 8486.269 8488.727 ... 8499.187 8500.200 ? 8502.483 8518.036 8528.967 8529.025

1.0 À0.1 À11.6 0.2 1.0 0.4 À4.8 4.6 3.0 À0.1 .. . .. . 1.0 À10.2 À1.0 À0.5 0.2 À0.2 0.0 À0.7 À1.4 0.0 0.8 À0.4 1.1 6.3 9.9 1.7 0.0 À10.7 À6.7 7.4 0.2 3.5 0.1 À0.6 À5.7 13.1 0.3 À0.3 .. . À1.0 5.7 0.0 0.3 À1.9 0.1

26 26* 3Fo 1s.24f y3Go 3d6.(3H).4s.4p.(3Po) 25 25* 3Fo 1s.23f 24 24* 1Po 4s.77p 3D 1s.12d 3Fo 1s.22f 23 23* ... ... 22 22* 3Fo 1s.21f 3Po 1s.6p 21 21* 3Fo 1s.20f 1D 1s.25d 20 20* 1Fo 1s.19f 1D 1s.23d 19 19* 1D 1s.22d 3Fo 1s.18f 1Fo 1s.18f 4G 2s.2p.(3Po).5f 2Po 3s2.3p3 18 18* 3D 1s.11d 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3P 2s2.2p3.(4So).3p 3Fo 1s.17f 1Fo 1s.17f 17 17* 1D 1s.19d 3S 1s.11s 2Po 3s2.3p3 3Fo 1s.16f 1Fo 1s.16f ... 1D 1s.18d 2Po 3s2.3p3 16 16* 1Po 1s.8p 1D 1s.17d 3Fo 1s.15f

**** **** 3.0 **** **** **** 2.0 **** **** **** ... ... **** **** **** **** **** **** **** **** **** **** **** **** **** 4.5 1.5 **** **** 1.0 1.0 1.0 **** **** **** **** **** 2.5 **** **** ... **** 1.5 **** 0.0 **** ****

**** **** 4.0 **** **** **** 1.0 **** **** **** ... ... **** **** **** **** **** **** **** **** **** **** **** **** **** 4.5 1.5 **** **** 0.0 2.0 1.0 **** **** **** **** **** 1.5 **** **** ... **** 0.5 **** 1.0 **** ****

0/0 ... 4/1 0/0 ... 0/0 0/0 ... ... 0/0 ... ... 0/0 ... ... 0/0 ... ... 0/0 ... ... 0/0 ... ... ... 4/0 2/1 0/0 ... 2/0 1/0 2/0 ... ... 0/0 ... ... 2/1 ... ... ... ... 2/0 0/0 0/0 ... ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 66.5 839.9 99999.0 34.7 15.7 620.0 99999.0 99999.0 65.8 663.8 29.8 84.3 99999.0 99999.0 271.6 83.9 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 0.0066 0.6807 0.0013 0.0027 0.0012 0.2844 0.0263 0.0319 0.0078 0.8362 0.0036 0.0094 0.0030 0.0049 0.0291 0.0091

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

8531.522.......

24.1

0.0102

8545.389 8548.026 8564.691 8567.730 8578.795 8581.867 8582.627 8584.378 8598.379 8608.294 8617.062 8629.244 8632.937 8648.270 8650.793

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

31.9 21.3 21.8 48.7 52.4 23.0 21.3 21.1 32.5 25.3 54.2 34.0 40.7 20.7 20.7

1.0458 0.0019 0.0041 0.0019 0.4382 0.0405 0.0491 0.0121 1.2901 0.0056 0.0145 0.0046 0.0076 0.0450 0.0140

183
0.0024 0.0048 0.0006 0.0501 0.0191 0.0071 0.0114 311.6 99999.0 99999.0 38.7 22.7 99999.0 7.4

8653.417 8665.022 8675.887 8680.370 8683.525 8686.267 8698.894 8703.334 8711.778 8718.959 8727.289 8729.674 8733.415 8736.001 8740.119 8750.463 8776.749 8780.667 8806.901 8816.619

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

19.0 31.2 32.3 56.8 57.6 52.3 18.4 54.0 52.8 53.4 58.3 36.4 22.1 22.2 25.2 32.3 19.7 19.5 42.0 19.8

0.0026 1.4733 0.0018 0.0597 0.0647 0.0342 0.0012 0.0417 0.0425 0.0211 0.0521 0.0079 0.0595 0.0212 0.0047 2.0458 0.0620 0.0014 0.0064 0.0092

0.0017 0.9501 0.0012 0.0385 0.0417 0.0220 0.0008 0.0268 0.0273 0.0135 0.0334 0.0050 0.0382 0.0136 0.0030 1.3112 0.0397 0.0009 0.0041 0.0058

99999.0 1255.0 4.9 396.1 382.0 99999.0 11.3 254.2 234.7 143.9 136.6 99999.0 263.2 104.4 15.2 556.5 99999.0 11.7 47.0 59.1

8820.439....... 8829.753....... 8843.375.......

27.3 24.2 26.9

0.0037 0.0075 0.0009

8845.337 8847.902 8849.082 8853.998

....... ....... ....... .......

21.7 26.2 27.4 26.0

0.0786 0.0301 0.0112 0.0179

5A .. . 2A 3A .. . 3A 1A .. . 1A .. . 3A .. . 3A 3A 2A .. . 6A .. . 3A 3A 5A 1A 3A 2A 5D 1A 1A 2A 1A 5A .. . .. . 3A 3A 1A .. . 2A 5A 9B 2A 4A 8 4A 5A 3A 4A 3A

He i He i Hi [Cl iii] He i Ni [Cl ii] He i He i He i Hi He i [Fe ii] Ni He i He i O ii He i He i Hi N ii Ni Ni Ni N ii Ni Ni Ni [C i] He i He i He i He i Hi He i ... Mg i He i O ii Oi [S iii] S ii [Ni i] He i He i He i He i

8530.930: 8531.508 8545.382 8548.200 8564.763 8567.735 8578.690 8581.856 8582.510 8584.369 8598.392 8608.312 8616.952 8629.236 8632.710 8648.258 8650.920: 8650.811 8653.240 8665.018 8676.090: 8680.282 8683.403 8686.149 8698.990: 8703.247 8711.703 8718.837 8727.120 8730.090: 8733.434 8736.037 8739.960 8750.473 8776.650 ... 8806.757 8816.820: 8817.110 ? 8820.423 8829.400 8842.920 ? 8843.374 ? 8845.000: 8847.700 8849.145 8854.100

À20.8 À0.5 À0.2 6.1 2.5 0.2 À3.7 À0.4 À4.1 0.3 0.4 0.6 À3.8 À0.3 À7.9 À0.4 4.4 0.6 À6.1 À0.2 7.0 À3.0 À4.2 À4.0 3.3 À3.0 À2.6 À4.2 À5.8 14.3 0.7 1.2 À5.5 0.3 À3.4 .. . À4.9 6.8 16.7 À0.6 À12.0 À15.4 0.0 À11.4 À6.9 2.1 3.4 1D 1s.3d 1D 1s.3d 3 3* 2Do 3s2.3p3 1Po 1s.3p 2P 2s2.2p2.(3P).3s 3P 3s2.3p4 3D 1s.3d 3Po 1s.3p 1D 1s.3d 3 3* 1Po 1s.3p a4F 3d7 2P 2s2.2p2.(3P).3s 3Po 1s.3p 3D 1s.3d 2Fo 2s2.2p2.(1D).4p 1D 1s.3d 3D 1s.3d 3 3* 3D 2s2.2p.(2Po).4p 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 3D 2s2.2p.(2Po).4p 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 4P 2s2.2p2.(3P).3s 1D 2s2.2p2 1Po 1s.3p 3D 1s.3d 1D 1s.3d 3D 1s.3d 3 3* 3Po 1s.3p ... 1Po 3s.3p 1Po 1s.3p 2F 2s2.2p2.(3P).4d 1Do 2s2.2p3.(2Do).3s 3P 3s2.3p2 2Po 3s2.3p2.(1S).4p 3F 3d8.(3F).4s2 3D 1s.3d 1D 1s.3d 3Po 1s.3p 3D 1s.3d 1Po 1s.15p 1Fo 1s.15f 15 15* 2Po 3s2.3p3 1D 1s.16d 2Po 2s2.2p2.(3P).3p 1D 3s2.3p4 3Fo 1s.14f 3D 1s.10d 1Fo 1s.14f 14 14* 1D 1s.15d a4P 3d7 2Po 2s2.2p2.(3P).3p 3S 1s.10s 3Fo 1s.13f 2D 2s2.2p2.(1D).5s 1Fo 1s.13f 3Po 1s.13p 13 13* 3Po 2s2.2p.(2Po).5s 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 3Po 2s2.2p.(2Po).5s 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 1S 2s2.2p2 1D 1s.13d 3Fo 1s.12f 1Fo 1s.12f 3Po 1s.12p 12 12* 3D 1s.9d ... 1D 3s.3d 1D 1s.12d 2Do 2s2.2p2.(1D).4p 1F 2s2.2p3.(2Do).3p 1D 3s2.3p2 2D 3s2.3p2.(1D).4d 1D 3d8.(1D).4s2 3Fo 1s.11f 1Fo 1s.11f 3S 1s.9s 3Po 1s.11p 2.0 **** **** 2.5 **** 0.5 2.0 **** **** **** **** **** 4.5 1.5 **** **** 3.5 **** **** **** 3.0 2.5 1.5 0.5 2.0 0.5 1.5 2.5 2.0 1.0 **** **** **** **** **** ... 1.0 1.0 2.5 2.0 0.0 0.5 2.0 **** 2.0 **** ****

1.0 **** **** 0.5 **** 1.5 2.0 **** **** **** **** **** 2.5 1.5 **** **** 2.5 **** **** **** 2.0 3.5 2.5 1.5 1.0 0.5 1.5 2.5 0.0 2.0 **** **** **** **** **** ... 2.0 2.0 2.5 3.0 2.0 1.5 2.0 **** 3.0 **** ****

0/0 ... 0/0 3/2 ... 3/1 1/1 ... ... ... 0/0 ... 2/0 3/1 ... ... 2/0 ... ... 0/0 2/1 2/2 5/4 7/5 5/1 7/5 7/5 4/3 0/0 0/0 ... ... ... 0/0 ... ... 0/0 0/0 2/0 0/0 1/1 2/0 1/0 ... 0/0 ... ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) Ju (13) 464.6 21.0 8.0 26.6 131.9 51.2 16.5 371.1 99999.0 36.5 755.9 5.7 144.4 3977.0 51.1 127.4 27.1 441.8 7.5 33.2 342.7 127.0 256.4 99990.0 1894.0 86.9 150.2 17.9 99999.0 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) Upper Term/Config (11) Jl (12) V (km sÀ1) (9) 1.6217 0.0032 0.0007 0.0030 0.0229 0.0090 0.0017 0.0795 0.0274 0.0070 1.2652 0.0017 0.0552 17.7936 0.0083 0.0103 0.0009 0.0770 0.0022 0.0067 0.0880 0.0273 0.0448 0.0064 2.8092 0.0136 0.0211 0.0024 0.0047

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Multi. (14)

8862.752 8873.451 8886.539 8892.237 8914.751 8930.778 8949.241 8996.949 8999.590 9009.026 9015.048 9052.447 9063.275 9068.905 9085.516 9094.797 9111.130 9123.737 9143.128 9174.224 9210.290

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

32.6 29.2 15.3 49.0 21.3 24.2 15.3 24.3 40.7 19.9 51.9 18.8 21.5 31.2 15.8 80.8 18.7 40.4 27.1 24.8 22.0

2.5496 0.0051 0.0011 0.0046 0.0361 0.0142 0.0028 0.1260 0.0435 0.0111 2.0076 0.0027 0.0878 28.3206 0.0132 0.0165 0.0014 0.1229 0.0036 0.0108 0.1412

184
0.0097 99999.0 0.0125 99.0 0.0007 0.0132 0.0114 0.0146 0.0053 0.1380 99999.0 86.5 135.5 31.6 473.9 8.5

9213.218 9218.313 9223.637 9228.996 9236.263 9244.407

....... ....... ....... ....... ....... .......

20.4 46.0 18.3 32.5 16.4 50.0

0.0438 0.0718 0.0102 4.5115 0.0219 0.0340

9250.959....... 9260.917.......

22.5 43.8

0.0039 0.0076

9262.666.......

43.7

0.0156

9265.934.......

27.8

0.0202

9268.114.......

19.2

0.0012

9303.057....... 9318.089....... 9387.009.......

20.0 22.5 55.1

0.0213 0.0184 0.0236

9393.159....... 9463.585.......

40.0 23.3

0.0086 0.2244

3A 2A .. . 5A 2A 5A 1A 4A 3A 4A 1A .. . 2A 3A 3A 6C 2A 0A .. . 5A 2A 8C 2A 1A .. . 2A .. . 3A 5B 5A 1A 1A 2C 1A 1A 3C 1A 1A 3C 9B 6A 5A .. . 7 5C * 1A

Hi Ci ... [Fe ii] He i He i He i He i He i He i Hi ... He i [S iii] He i Ci He i [Cl ii] ... He i He i Fe ii He i Mg ii ... Hi ... Mg ii Fe ii C ii Oi Oi Oi Oi Oi Oi Oi Oi Oi C ii [Fe ii] He i ... Ni [Fe i] Ni He i

8862.783 8873.360 ? ... 8891.913: 8914.771 8930.970: 8949.200 8996.700 8999.400 9009.180 9014.910 ... 9063.282 9068.600 9085.630 9094.830: 9111.000 9123.600 ... 9174.488: 9210.260 9210.720 ? 9213.200 9218.250 ? ... 9229.014 ... 9244.260 ? 9244.739 ? 9251.010: 9260.806 9260.848 9260.937 9262.582 9262.670 9262.776 9265.826 9265.932 9266.005 9267.270 ? 9267.563: 9303.420: ... 9386.805: 9386.985: 9392.793 ? 9463.534

1.1 À3.1 .. . À10.9 0.7 6.4 À1.4 À8.3 À6.3 5.1 À4.6 .. . 0.2 À10.1 3.8 1.1 À4.3 À4.5 .. . 8.7 À1.0 14.0 À0.6 À2.1 .. . 0.6 .. . À4.8 10.8 1.6 À3.6 À2.2 0.6 À2.7 0.1 3.6 À3.5 À0.1 2.3 À27.3 À17.8 11.7 .. . À6.5 À0.7 À11.7 À1.6

3 3* 1D 2s2.2p.(2Po).3p ... a4F 3d7 1S 1s.3s 1Po 1s.3p 1Po 1s.3p 3D 1s.3d 1D 1s.3d 3D 1s.3d 3 3* ... 3Po 1s.3p 3P 3s2.3p2 1Po 1s.3p 3Po 2s2.2p.(2Po).3s 1Po 1s.3p 3P 3s2.3p4 ... 3Po 1s.3p 3D 1s.3d c4F 3d6.(3F2).4s 1D 1s.3d 2S 4s ... 3 3* ... 2S 4s c4F 3d6.(3F2).4s 2Po 2s.2p.(3Po).3s 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 5P 2s2.2p3.(4So).3p 2Po 2s.2p.(3Po).3s a4F 3d7 1Po 1s.3p ... 2P 2s2.2p2.(3P).3s a5F 3d7.(4F).4s 2P 2s2.2p2.(3P).3s 3S 1s.3s

11 11* 1Po 2s2.2p.(2Po).5s ... a4P 3d7 1Po 1s.7p 1D 1s.11d 1S 1s.11s 3Fo 1s.10f 1Fo 1s.10f 3Po 1s.10p 10 10* ... 3D 1s.8d 1D 3s2.3p2 1D 1s.10d 3P 2s2.2p.(2Po).3p 1S 1s.10s 1D 3s2.3p4 ... 3S 1s.8s 3Fo 1s.9f z4Go 3d6.(3H).4p 1Fo 1s.9f 2Po 4p ... 9 9* ... 2Po 4p z4Go 3d6.(3H).4p 2D 2s.2p.(3Po).3p 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 5Do 2s2.2p3.(4So).3d 2D 2s.2p.(3Po).3p a4P 3d7 1D 1s.9d ... 2Do 2s2.2p2.(3P).3p a3P 3d6.4s2 2Do 2s2.2p2.(3P).3p 3Po 1s.5p

**** 2.0 ... 3.5 0.0 1.0 1.0 **** 2.0 **** **** ... **** 1.0 1.0 2.0 1.0 1.0 ... **** **** 3.5 2.0 0.5 ... **** ... 0.5 2.5 0.5 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 1.5 1.5 1.0 ... 0.5 3.0 1.5 ****

**** 1.0 ... 1.5 1.0 2.0 0.0 **** 3.0 **** **** ... **** 2.0 2.0 2.0 0.0 2.0 ... **** **** 2.5 3.0 1.5 ... **** ... 0.5 3.5 1.5 0.0 1.0 2.0 1.0 2.0 3.0 2.0 3.0 4.0 1.5 0.5 2.0 ... 1.5 2.0 2.5 ****

0/0 0/0 ... 5/1 0/0 0/0 0/0 ... 0/0 ... 0/0 ... ... 1/1 0/0 3/0 0/0 1/1 ... ... ... 7/1 0/0 1/1 ... 0/0 ... 1/1 8/2 2/0 8/3 8/2 7/4 8/5 7/4 5/3 5/2 4/2 2/1 2/0 7/1 0/0 ... 2/0 2/0 2/0 ...


TABLE 3--Continued I ðÞ=I ðH Þ (I ðH Þ ? 100) (4) S/N (5) 247.1 5092.0 1107.0 66.5 116.9 103.1 IDI (6) ID (7) œ (A) (8) Lower Term/Config (10) V (km sÀ1) (9) 0.0810 42.2567 3.5913 0.0139 0.0169 0.0228

0 œ (A) (1)

FWHM (km sÀ1) (2)

F ðÞ=F ðH Þ (F ðH Þ ? 100) (3)

Upper Term/Config (11)

Jl (12)

Ju (13)

Multi. (14)

9516.592 9530.929 9545.854 9552.904 9603.397 9625.445

....... ....... ....... ....... ....... .......

35.7 42.8 32.6 24.7 16.0 30.3

0.1321 68.9313 5.8626 0.0227 0.0277 0.0374

185
0.0120 0.0044 0.0016 0.0107 0.0052 0.0082 0.0076 0.0442 0.0082 51.4 25.6 9.0 70.4 22.6 40.5 99999.0 99999.0 14.7

9702.529 9778.841 9794.186 9797.660 9805.383 9809.767 9822.279 9824.092 9834.627

....... ....... ....... ....... ....... ....... ....... ....... .......

29.6 68.4 29.3 35.4 71.6 57.5 40.6 56.2 51.5

0.0198 0.0072 0.0027 0.0177 0.0086 0.0136 0.0126 0.0731 0.0135

1A 3A 4A 2A 3A 7 7 6C 5A 6C 5A 4A 2A 2A .. . .. . 7 9 3A 5C

He i [S iii] Hi He i He i Oi Oi Oi Oi Oi He i He i [Fe i] N ii ... ... Ni Ni [C i] Ni

9516.562 9530.600 9545.972 9552.890 9603.440 9625.261: 9625.296: 9625.325: 9625.360: 9625.367: 9625.697: 9702.614 9778.731 ? 9794.050 ? ... ... 9810.010: 9822.750 ? 9824.130 9834.610:

À0.9 À10.4 3.7 À0.5 1.3 À5.8 À4.7 À3.7 À2.6 À2.4 7.9 2.6 À3.4 À4.2 .. . .. . 7.4 14.4 1.2 À0.5 3Po 1s.3p 3P 3s2.3p2 3 3* 3D 1s.3d 1S 1s.3s 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 3Do 2s2.2p3.(4So).4d 1Po 1s.3p 3Po 1s.3p a5F 3d7.(4F).4s 1Fo 2s2.2p.(2Po).4d ... ... 4Do 2s2.2p2.(3P).3p 4Do 2s2.2p2.(3P).3p 3P 2s2.2p2 4Do 2s2.2p2.(3P).3p

3D 1s.7d 1D 3s2.3p2 8 8* 3Po 1s.8p 1Po 1s.6p 3D 2s2.2p3.(2Do).3p 3D 2s2.2p3.(2Do).3p 3D 2s2.2p3.(2Do).3p 3D 2s2.2p3.(2Do).3p 3D 2s2.2p3.(2Do).3p 1D 1s.8d 3S 1s.7s a3P 3d6.4s2 2[9/2] 2s2.2p.(2Po<3/2>).5f.G ... ... 4D 2s2.2p2.(3P).3d 4D 2s2.2p2.(3P).3d 1D 2s2.2p2 4D 2s2.2p2.(3P).3d

**** 2.0 **** **** 0.0 3.0 3.0 2.0 2.0 1.0 1.0 **** 1.0 3.0 ... ... 1.5 2.5 1.0 2.5

**** 2.0 **** **** 1.0 2.0 3.0 2.0 3.0 2.0 2.0 **** 2.0 4.0 ... ... 0.5 2.5 2.0 1.5

... 1/1 0/0 ... 0/0 4/0 3/0 6/0 4/0 6/0 0/0 ... 2/1 ... ... ... 7/0 4/0 0/0 5/0

Notes.--(Col. [1]) Observed wavelength corrected for +68.6 km sÀ1 nebular proper motion. (Col. [2]) FWHM of line. (Col. [3]) Observed intensity of line with respect to the observed intensity of H (F ðH Þ ? 1:31 Â 10À11 ergs cmÀ3 sÀ1). (Col. [4]) Dereddened intensity of line with respect to H (I ðH Þ ? 2:87 Â 10À11 ergs cmÀ3 sÀ1). (Col. [5]) S/N of line; `` 99999.0 '' indicates indeterminate. (Col. [6]) EMILI IDI value/rank (A, B, C, D) where applicable. Asterisk (*) denotes that IDI > 9. No IDI value/rank for manual IDs. (Col. [7]) Source ion of line. (Col. [8]) Tabulated wavelength of transition. Colon and asterisk are as indicated in text. (Col. [9]) Difference in wavelength between observed and tabulated wavelength, V ? c Ãð À o Þ= km sÀ1. (Col. [10]) Lower level term/configuration. Coupling schemes used are LS, LK, J1K. (Col. [11]) Upper level term/configuration. (Col. [12]) Lower level J value, Asterisks indicate that J is indeterminate (line from blended level). (Col. [13]) Upper level J value. (Col. [14]) EMILI multiplet check statistics for LS coupled levels only; (A/B), where A is number of lines expected and B is the number considered found. Not used for manual IDs. Asterisk indicates that A > 9. Table 3 is also available in machine-readable form in the electronic edition of the Astrophysical Journal Supplement.


186

SHARPEE ET AL.

Vol. 149

identifications that are not rated as questionable. There are a total of 754 such line identifications, for 480 observed lines for which there was only one suggested identification and for a further 144 observed lines for which there is more than one possible identification. The dereddened strengths of these identified lines range down to slightly below 10À5 the intensity of H .
5. COMPARISON OF EMILI RESULTS WITH PREVIOUS STUDIES

disagreements between the manual IDs and those ranked A by EMILI, and we believe that EMILI is more likely to be correct than the traditional line identifications in a majority of cases. This raises the question as to which identification process, traditional or software, yields more correct results. This question can only be answered after a larger sample of objects have been studied at fainter flux levels so that some consensus emerges as to the correct identification of the weakest lines.

The correctness of spectral line identifications, especially for fainter lines that are not frequently observed, is difficult to ascertain. There is no absolute benchmark of correct IDs with which to compare the results of EMILI, except possibly for the stronger lines in spectra which have been observed in many objects and for which there is universal agreement. We will therefore undertake to compare EMILI results with those of previous studies done traditionally as an indication of their reliability. We are currently engaged in a program to obtain high S/N spectra of a sample of emission-line objects to which we can apply EMILI. At present we have excellent data for IC 418 (Paper II), and we have access to high-resolution spectra of the Orion Nebula (Baldwin et al. 2000), for which detailed traditional line identifications have also been made. For IC 418 we compare the EMILI identifications from this study with those made by Hyung, Aller, & Feibelman (1994) from their Lick Observatory echelle data. We have taken the spectra of IC 418 and the Orion Nebula and have generated the necessary line characterization and wavelength error tables from rdgen. This information has been fed into EMILI using our updated version 2.04 of the line database and standard nebular parameters with solar abundances. Line identifications have been made, and when the lowest value of the IDI has been shared by more than one line all of those lines are assigned as IDs. The resulting identifications have then been compared with the published IDs for the Orion Nebula and IC 418. The comparison of EMILI IDs with those assigned traditionally for these nebulae is given in Table 4. The EMILI ID rankings A, B, C, and D refer to the first, second, third, and fourth highest ranked IDs from the algorithm. The comparison shows that the EMILI identifications ranked as `` A '' agree with the traditional manual ID for about 85% of all lines. Furthermore, 90%-98% of all manual IDs are ranked as A, B, C, or D by EMILI. The agreement with those ranked A can be improved upon easily by optimizing the way in which the IDI is defined. We have taken a close look at some of the

6. SUMMARY AND FUTURE PROSPECTS

TABLE 4 Comparison of EMILI vs. Manual Line Identifications IC 418 Rank A ........................... B ........................... C ........................... D .......................... Unranked ............. Total ..................... N 178 4 5 0 16 203 % 88 2 2 0 8 Orion Nebula N 329 34 12 5 8 388 % 85 9 3 1 2

The time- and labor-intensive method of traditional identification of spectral lines has acted as a deterrent to obtaining very high S/N, high-resolution spectra of astronomical objects. The task of making manual identifications for large numbers of lines has required such effort that the focus has been on utilizing only well-known stronger lines as diagnostics to determine physical conditions. Yet, modern spectrographs and detectors make very faint lines observable with only a modest investment of telescope time, and the large amount of new information that is certain to be contained in previously unstudied weak lines can now be tapped. Even with its current simple logic EMILI works well in identifying lines in nebular spectra, and certainly well enough to justify continued improvement. It would benefit from new features such as the ability to interrogate multiple line databases, and using additional criteria to evaluate candidate IDs, including a more sophisticated way to deconvolve line blends. Also, it should be applied to the spectra of additional types of emission-line objects. One of the eventual goals is to include very heavy elements in the line lists so that s- and r-process elements can be identified when lines from these elements are detected in spectra. This may require detecting lines down to 10À6 the intensity of H . This flux level is 100 times fainter than the nebular continuum of the emitting gas upon which the lines are superposed; however, the requisite S/N is achievable. The very large numbers of emission lines that would be revealed in such spectra are precisely the situation that requires an automated line identification aid such as EMILI. The logic incorporated into EMILI is based upon traditional procedures used by spectroscopists for making manual line identifications in astronomical spectra. There are a number of uncertainties involved in the application of EMILI to spectra, and a number of areas in which improvements should eventually be made. One of the major difficulties of spectral line identification is accurately characterizing blends of multiple lines. It is often difficult to prove whether a feature is or is not a blend, and what the component wavelengths and line widths are when it is a blend. Emission-line objects can have a complex kinematical structure that results in complicated line profiles which differ from ion to ion of the same element. For example, a line of sight that passes through an expanding shell, as is the case for the object IC 418, produces a distinct doublepeaked profile that is easily misinterpreted as two separate lines rather than a single feature. The stronger signature lines in the spectrum easily remove this uncertainty because they generally do not suffer significant blending and can therefore be used to characterize the different line profiles. For the current version of EMILI only a cursory effort was made to use differing intrinsic line widths and profiles as


No. 1, 2003

INTRODUCING EMILI

187

identification discriminants because of the complexity involved in doing proper line deconvolutions for large numbers of lines. However, these criteria should be developed further in future versions of EMILI. One of the most important aspects of faint line detection is the use of spectral resolution that can resolve the narrowest lines in the spectrum, which is set by the thermal widths of the lines (typically, of order 10 km sÀ1) and bulk motions in the gas. Higher spectral resolution increases the accuracy of measured line wavelengths, which is the most important criterion in making line IDs, and it serves to increase the contrast between peak line intensity and the surrounding continuum. The detectability of emission lines is further enhanced by low bulk velocities of the gas and by the faintest possible continuum against which the lines are detected. One cannot escape the bound-free and 2-photon continuum emitted by the ionized gas, but one can select objects of low dust content in order to minimize the contribution of the scattered continuum from the ionizing star. The number density of lines increases at fainter intensity levels and the proper identification of the weakest lines becomes increasingly uncertain due to the less welldetermined wavelengths of these features and the higher fraction of associated multiplet lines that are not observed because their S/N is below the threshold of detection. This is inevitable, and there will always be a substantial fraction of lines at the threshold of detection for which the criteria for confirmation are not well determined. Line IDs for the faintest lines are generally less certain, and further progress can be made by pressing for spectra with yet higher S/N, since the faintest flux levels we have achieved do not approach a line density that is so high that weak lines blend into each other to form a pseudo-continuum.

Finally, the v2.04 Atomic Line List is the only database that we have interrogated in searching for potential identifications in the present version of EMILI, and its wavelengths are accepted as valid for each transition. A more thorough search process should eventually interrogate multiple line lists and should include molecular lines, especially those that are known to be present in the night sky spectrum (Osterbrock et al. 1996). Imperfect sky subtraction inevitably results in night sky lines being present in the spectra of many objects, and even though these lines are not intrinsic to the object, they do require proper identification. The current line identification software is still in a rudimentary form, yet it is already shown to be reliable and efficient in making an arduous process consistent and tractable. EMILI produces the largest gains over the traditional method in situations where there are large numbers of lines to be identified, as in our deep echelle spectra of IC 418. For spectra of lower resolution the current version of EMILI is likely to be less successful because of the importance that it assigns to wavelength accuracy. We are experimenting with making the relative weights given to the identification criteria variable and dependent upon the resolution and S/N of the spectrum. Further refinement of the software logic and steady progress in compiling more complete transition databases should produce a reliable product and have a dramatic impact on high S/N spectroscopy in the next decade.

P. v. H. thanks the Engineering and Physical Sciences Research Council of the United Kingdom for financial support.

REFERENCES Liu, X.-W., Storey, P. J., Barlow, M. J., Danziger, I. J., Cohen, M., & Baldwin, J. A., Verner, E. M., Verner, D. A., Ferland, G. J., Martin, P. G., Bryce, M. 2000, MNRAS, 312, 585 Korista, K. T., & Rubin, R. H. 2000, ApJS, 129, 229 Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae & Active Cowley, C. R., & Adelman, S. J. 1990, PASP, 102, 1077 Galactic Nuclei (Mill Valley: University Science Books) Esteban, C., Peimbert, M., Torres-Peimbert, S., & Escalante, V. 1998, Osterbrock, D. E., Fulbright, J. P., Martel, A. R., Keane, M. J., & Trager, MNRAS, 295, 401 S. C. 1996, PASP, 108, 277 Esteban, C., Peimbert, M., Torres-Peimbert, S., Garcia-Rojas, F., & Pequignot, D., & Baluteau, J.-P. 1994, A&A, 283, 593 Rodriguez, M. 1999, ApJS, 120, 113 Walsh, J. R., Pequignot, D., Morisset, C., Storey, P. J., Sharpee, B., Hartoog, M. R., Cowley, C. R., & Cowley, A. P. 1973, ApJ, 182, 847 Baldwin, J., van Hoof, P. A. M., & Williams, R. E. 2001, IAU Symp. Hyung, S., Aller, L. H., & Feibelman, W. A. 1994, PASP, 106, 745 209, Planetary Nebulae: Their Evolution and Role in the Universe, ed. Liu, X.-W., Danziger, I. J., Barlow, M. J., & Clegg, R. E. S. 1995, MNRAS, S. Kwok, M. Dopita, & R. Sutherland (San Francisco: ASP), in press 272, 369