Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0098-1-1.pdf
Äàòà èçìåíåíèÿ: Wed Feb 25 13:19:07 2015
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 00:23:27 2016
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: http astrokuban.info astrokuban
The accuracy of the RGS Wavelength Scale XMM-SOC-CAL-TN-0098 issue 1.1
R. Gonz´lez­Riestra a XMM­SOC April 20, 2012

1

Intro duction

The improvement of the wavelength scale of the RGS instruments has been one of the prime ob jectives of the XMM-Newton calibration since the beginning the mission. The accuracy of the wavelength scale of a given RGS spectrum depends on one side on the knowledge of all the parameters involved in the geometry of the system (given in the calibration files) and on the other, on the precision of the coordinates of the considered source, that are needed by SAS to process the data. Previous studies of RGS spectra of emission line sources have shown that there is a systematic shift of the line positions with respect to laboratory wavelengths, and that the wavelength scales of both RGS are displaced by a few m°. These works have also established that wavelengths measured A in RGS spectra are accurate to 7 m° in first order and to 5 m° in second order (Lorente et al. A A 2003). Along the last years, several studies have been carried out to clarify the origin of these systematic effects and to identify possible ways to minimise them. Coia and Pollock (2007, hereafter CP07) measured global fits of 66 observations of the four wavelength calibrators (AB Dor, Capella, Procyon and HR 1099). Special care was put in using accurate coordinates, taking into account the proper motion of the stars. They found a systematic shift of 5 m° between first order RGS1 and RGS2 spectra. The shift in second order was smaller, only 2 m°. A A A further study by the same authors (Coia and Pollock, 2008) showed that this systematic shift can be suppressed by changing the incidence angle 0 by 1.2 and 3.4 arcsec for RGS1 and RGS2, respectively. Gonz´lez-Riestra (2008, hereafter GR08) tried to find a correlation between the wavelength shift a and other parameter (time, position angle...). This work used a sub-sample of CP07 data (38 observations), and confirmed the shifts previously found, as well as the tight correlation between the shifts of both instruments. The main result of this work was the correlation found between the wavelength shift and the the spacecraft "Solar Angle"1 (the angular distance between the Sun and the pointing direction, see clarification below). The application of this correction, in addition to make the average shifts close to zero and to align both instruments, decreases the scatter of the line shifts by 20%. This study left some points open. The present report has the following goals: · To investigate the effect of correcting the observed wavelengths for the velocity of the Earth with respect to the Solar System barycentre, · To determine if that correction improves the correlation between line shifts and Solar Angle. · To study the possible dependence of line shifts on wavelength. To address these points it is necessary to know not only the global shift of each spectrum, but the positions of the individual lines. Therefore the dataset of CP07 is not suitable for this purpose, and a different approach is needed. Also, recent data have been added to the sample.
1 The relation b etween wavelength shift and Solar Angle has b een confirmed indep endently by Kaastra et al. (2011) in their analysis of RGS spectra of Mkn 509.

1


2

Metho dology

The new sample is composed of 119 exposures (59 for RGS1, 60 for RGS2) of the four wavelength calibrators (AB Dor, Capella, HR 1099 and Procyon) observed between rev. 54 (March 2000) and 2027 (Jan 2011). The list of spectra used in this work is given in Table 6. The observations used in the analysis were selected with the following criteria: · Prime instrument: RGS1 · Maximum offset of the target from the on-axis position: 60 arcsec · Minimum number of counts in the spectrum: 3000 in first order All the data where processed with SAS using coordinates corrected for proper motion. The following lines were considered, with the laboratory wavelengths taken from the CHIANTI database: M N F F O g XII eX e XVII e XVII VIII 8.419 12.132 15.015 16.777 18.967 ° A ° A ° A ° A ° A I O O N C n V V V V f I I I I irst ord I 21. I 22. I 24. 33. e 6 1 7 7 r 0 0 7 3 only: 2° A 1° A 9° A 4° A

Lines were measured on the fluxed spectra computed with a wavelength bin of 10 m°. No specific A shape of LSF was used. The line profile was assumed to be composed of a gaussian plus a lorentzian. The only constrains imposed on the fit were that both components should have the same central wavelength, and that the widths are within some reasonable limits. The relative intensity of both components was left free. Fits were made using the IDL Library MPFIT, taking into account the errors in the data points as derived by the SAS task rgsfluxer. Only measurements with an error of less than 5 m° in the line position were used in the analysis. A Note that the values in the CP07 dataset did not include the errors in the measurements, and they were - arbitrarily - assumed in GR08 to be proportional to the number of counts in the spectrum. The errors computed here are more realistic and reliable. Two corrections were applied to the line positions: · The velocity of direction of the correction is ne that represents · The radial - Capella: - AB Dor: - HR 1099: - Procyon: the Earth with respect to the barycentre of the Solar System, pro jected in the target. These correction is listed in Table 6. Due to its ecliptic coordinates, this gligible for AB Dor, while for the three other stars it can go up to ± 29 km s-1 , 3 m° in the C VI line. A

velocity of the ob ject2 : 29 km s-1 (Ishibashi et al. 2006) 30 km s-1 (Nordstroem et al. 2004) -15 km s-1 (Nordstroem et al. 2004) -4 km s-1 (Nordstroem et al. 2004)

No corrections have been made: · For the velocity of the spacecraft in its orbit (not more than 3 km s
-1

).

· For the velocities of the emitting star in the binary systems Capella and HR 1099 and for the possible rotational modulation in AB Dor: ­ Ishibashi et al. (2006) in their analysis of Chandra/HETGS data, show that in the case of Capella the lines seem to come from the primary star, and then they follow its radial velocity, that has an amplitude of approximately 40 km s-1 , and a period of 104 days. Nevertheless, these authors point out that there could also exist a variable contribution from the secondary star in the higher temperature lines that may cause a shift in the line centroid.
2 In the first version of this rep ort, slightly different radial velo cities were used, within ±2 km s-1 of the values listed here, except for HR 1099, where the value previously used was -23 km s-1 . This difference in the radial velocities does not change substantially the results.

2


Table 1: Comparison of average shifts with previous results Line shift (m°) A RGS2 o1 RGS1 o2 11±9 2±6 10±7 4±4 8±7 3±4 RGS 1-RGS 2 (m°) A Order 1 Order 2 -5 ±2 -2 ±3 -4 ±2 -1 ±1 -5 ±2 -1 ±1 Order 1-Order 2 (m°) A RGS1 RGS2 2±6 5±7 2±4 5±4 2±4 4±4

GR08 GR12 GR12v

RGS1 o1 6±8 5±7 3±6

RGS2 o2 5±7 5±4 4±4

GR08: Data from CP07. GR12: This work without velocity corrections. GR12v:This work, with ob ject and barycentre velocity correction. errors are standard deviations. ­ The Lyman Ne X line in HR 1099 appears to come from the subdwarf star (Ayres et al. 2001). The orbital period of the system is 2.84 days. The average exposure time of the HR 1099 spectra in the sample is 0.4 days, 13% of the orbital period, and then the position of the lines can change substantially during an observation. ­ In AB Dor, rotationally modulated shifts of the order of 30 km s-1 have been observed in the O VIII line (Hussain et al. 2005). The rotation period of the star is 0.5 day, of the order of the average exposure time of these data (0.43 days). ° A These velocities could cause a shift in the line positions of at most ±3 mA at 20 °. For comparison with previous works, an average shift was computed for each spectrum as the weighted average of the individual line shifts, weighted by their errors.

3
3.1

Results
Average Shifts
and without correction for star and barycentre velocities, are 6, 7, 8 and 9, together with the data of CP07, for comparison. instrument and spectral order computed in this work compared can be explained by the different data samples used.

The average shifts per spectrum, with shown in Tables 7, 8, 9 and 10 and Fig. Table 1 shows the average shifts per to those given in GR08. Discrepancies

· We have first compared GR08 results with the values derived here without applying any velocity correction. The new average shifts agree with those derived in GR08 within 2 m°. It must be A noted that the rms of the newly derived values is 2 m° smaller, though the sample is larger (60 A vs. 38 observations). · The application of the velocity corrections decreases systematically the average shifts by 2 m°, A independently of the instrument and the order. · The shift between both orders and both instruments does not change (see Fig. 1).

3.2

Correlation of line shifts with Solar Angle

In GR08, line shifts were correlated with the angular distance between the target and the Sun. In what follows we shall refer to this parameter as "Solar Angle" (SA3 ). Results of the fit of average shifts with Solar Angle are shown in Table 2 and Fig. 2. The data errors used in the fit are the errors of the mean of the line shifts in each spectrum. The application of the SA correction removes naturally the systematic shift between instruments and orders.
3 This angle is equivalent to the Fine Sun Sensor Pitch Angle + 90 degrees. In GR08 this angle was called "Solar Aspect Angle" (SAA), though, rigorously, the SAA and the SA only coincide for a Roll angle of 0 (as it happens in most of the cases).

3


Figure 1: Shifts between both instruments and both orders for different datasets (see text for details). Left: Shift between RGS1 and RGS2. Right: Shift between first and second order. Numbers given in the plots are the median and the standard deviation of the distributions.

Table 2: Fits to Solar Angle GR08 b 0.62±0 0.66±0 0.32±0 0.36±0 GR12 b 0.54±0 0.56±0 0.31±0 0.33±0 GR12v b -0.57±0 -0.57±0 -0.30±0 -0.32±0

RGS1 RGS2 RGS1 RGS2

o o o o

1 1 2 2

2 7 2 3

.3 .3 .3 .4

a ± ± ± ±

0 0 0 0

.3 .3 .8 .8

-

.0 .0 .0 .0

3 3 6 6

Res -1 ±6 -2 ±7 0±6 0±6

3 8 3 4

.7 .3 .7 .2

a ± ± ± ±

0 0 0 0

.2 .2 .2 .1

-

.0 .0 .0 .0

2 2 3 1

Res 0±5 0±5 -1 ±3 0±3

1 6 1 2

.9 .8 .4 .8

a ± ± ± ±

0 0 0 0

.2 .2 .1 .1

.0 .0 .0 .0

2 2 2 2

Res 1±5 1±5 1±3 1±3

line shift (m°) = a + b x (SA - 90) A Res: residuals of the fit in m°, errors are standard deviations. A GR08: Data from CP07. GR12: This work without velocity corrections. GR12v:This work, with star+barycentre velocity correction .

4


Figure 2: Linear fits of the average line shifts to the Solar Angle (top: first order, bottom: second order). The parameters of the linear fit, as well as the correlation coefficient (C) are shown in the plots. The slope of the fits, that in GR08 were rather different for RGS1 and RGS2 in first order (-0.62 vs. -0.66 for first order, -0.32 vs. -0.36 for second order) agree better when the new measurements are used. The rms of the residuals of the fit decreases by 2 m° with respect to GR08. A A summary of the results is presented in Table 3. After correction for star and barycentric velocities, and application the Solar Angle correction, the rms of the average shifts is substantially reduced with respect to the values obtained in GR08, from 8 to 5 m° in first order, and from 6 to 3 A m° in second order (see Fig. 4). A The Sun Angle correction has been applied to the individual lines, and re-computed the line shifts. Histograms of the line shifts are shown in Fig. 5, where the original shifts are shown in black, and the new ones (corrected for stellar and barycentric velocities and after application of the Sun Angle correction) in red.

3.3

Correlation of line shifts with wavelength

We have performed a study similar to what has been described in the previous section, but on an individual line basis. We report here only the results obtained after correcting the line positions for star and barycentre velocities. There seems to exist a trend of the shift being systematically smaller at longer wavelengths (see Table 4 and Fig. 3), but it is not statistically significant. More evident is the trend of the slope of the linear relation with SA being steeper at longer wavelengths. The slope for the C VI line is significantly more negative than for the other lines (Table 5). This effect needs to be further investigated.

5


Table 3: Summary RGS1 RGS2 RGS1 RGS2 Line GR0 GR0 GR1 GR1 GR1 o o o o 1 1 2 2 GR08 6±8 11±9 2±6 5±7 GR08s -1 ±6 -2 ±7 0±6 0±6 GR12 5±7 10±7 4±4 5±4 GR12v 3±6 8±7 3±4 4±4 GR12vs 1±5 1±5 1±3 1±3

shifts in m°, errors are standard deviations. A 8: Data from CP07 8s: Data from CP07, with Solar Angle correction. 2: This work without velocity corrections. 2v: This work with system and barycentre velocity correction. 2vs:This work with star+barycentre velocity and Solar Angle correction.

Table 4: Shifts of individual lines ° Line shift (mA) RGS2 o1 RGS1 o2 8±8 -1 ±6 9±7 3±4 10±7 1±5 5±7 1±5 8±6 1±4 ... ... ... ... 8±8 ... 4±10 ... 8±7 3±4 RGS1-RGS2 (m°) A Order 1 Order 2 -5 ±6 -1 ±5 ... -1 ±2 -7 ±3 -2 ±4 -1 ±4 -2 ±4 -4 ±3 ... ... ... ... ... ... ... -6 ±6 ... -5 ±2 -1 ±1 Order 1-Order 2 (m°) A RGS1 RGS2 6±6 6±8 0±10 6±10 2±10 0±10 6±8 2±10 5±11 ... ... ... ... ... ... ... ... ... 2±4 4±4

Line 8.419 12.13 15.01 16.77 18.96 21.60 22.10 24.78 33.73 Avg

4 5 7 9 2 1 1 6

RGS1 o1 3±8 4±2 3±7 3±7 4±7 1±7 -1 ±7 ... 0±9 3±6

RGS2 o2 -3 ±6 4±4 4±4 1±5 ... ... ... ... ... 4±4

Avg: from Table 1, shown for comparison. errors are standard deviations.

Figure 3: Comparison of the shifts of two lines at different wavelengths: C VI 33.73 ° (black) A Fe XVII 15.01 ° (red).Numbers given in the plots are the median and the standard deviation of the A distributions.

6


Table 5: Fit of shifts of individual lines with Solar Angle a -0.7±0.7 ... 4.0±0.2 4.1±0.2 3.6±0.1 2.2±0.2 -0.7±0.3 ... -0.7±0.4 1.9±0.2 RGS1 b 0.51±0 ... 0.37±0 0.53±0 0.56±0 0.56±0 0.56±0 ... 0.63±0 0.57±0 o1 .05 .0 .0 .0 .0 .0 1 1 1 2 2 Res (m°) A -1 ±5 ... -1 ±6 0±6 0±5 0±6 0±5 ... 1±8 1±5 6 7 9 6 7 a .5±0 .0±0 .6±0 .7±0 .4±0 ... ... .6±0 .1±0 .8±0 .8 .2 .2 .3 .1 0 0 0 0 0 RGS2 b .41±0 .54±0 .48±0 .47±0 .56±0 ... ... .59±0 .74±0 .57±0 o1 .0 .0 .0 .0 .0 6 2 1 2 1 Res (m°) A -2 ±6 1±6 -1 ±6 -2 ±6 1±6 ... ... 0±6 -2 ±8 1±5

8.41 12.1 15.0 16.7 18.9 21.6 22.1 24.7 33.7 Avg

9 3 1 7 6 0 0 8 3

-

4 5 7 9 2 1 1 6

.04 .02

7 6 6

.3 .3 .2

-0 -0 -0

.03 .03 .02 o2 .0 .0 .0 .0 7 2 1 2

8.41 12.1 15.0 16.7 18.9 Avg

9 3 1 7 6

4 5 7 9

a -4.2±0.8 2.7±0.2 1.8±0.2 -1.8±0.6 1.3±0.2 1.4±0.1

-

RGS1 b 0.32±0 0.29±0 0.30±0 0.28±0 0.29±0 0.30±0

o2 .0 .0 .0 .0 .0 .0 6 2 1 5 2 2 Res 1 0 0 1 1 1 (m°) A ±4 ±3 ±4 ±5 ±4 ±3 a -1.0±0.9 3.3±0.2 4.2±0.2 0.9±0.3 ... 2.8±0.1 -

RGS2 b 0.12±0 0.34±0 0.33±0 0.33±0 ... 0.32±0

.02

Res (m°) A -1 ±6 0±3 0±3 0±3 ... 1±3

line shift (m°) = a + b x (SA - 90) A Avg: from Table 1, shown for comparison. A Res: residuals of the fit in m°, errors are standard deviations.

4

Conclusions

We have shown that the accuracy of the RGS wavelength scale, derived using a dataset of observations with precise coordinates and corrected for Earth and stellar velocities, is 6 and 4 m°, for first and A second order spectra, respectively (from measurement of individual lines; the accuracy derived from average shifts is 5 and 3 m°). Both spectrographs show a systematic offset with respect to laboratory A wavelengths, that is larger for RGS2. It must be noted that these values have been obtained from a well controlled dataset, to which several corrections were applied. Wavelengths measured on spectra to which no (or different) corrections are applied would be less accurate. Using this improved dataset, we have derived new values of the parameters of the "Solar Angle" correction (i.e. the dependence of the line shift with the angular distance between the target and the Sun). The error in the slope of the linear fit decreases with respect to previous values, for first order data from 0.03 to 0.02, and from 0.06 to 0.02 in second order. The application of this correction allows to align both instruments and both spectral orders, and decreases the scatter in the average shifts to 5 and 3 m° for first and second order spectra, respectively. A We have also studied a possible dependence of the line shifts on wavelength (i.e. different lines having different shifts), but we have not found a clear correlation. There are some indications of the shift of the C VI line being systematically smaller than for e.g. Fe XVII. The slope of the relation with SA is definitely steeper for the C VI line. More work needs to be made in this respect. Until this study is done, the application of the SA relation derived from the average spectrum shifts would represent already a significant improvement in the RGS wavelength scale. The conclusions of this report are as follows: · The accuracy of the RGS wavelength scale can be improved through the application of several corrections. · Some of them cannot be generally applied to all observations, in particular in the context of Pipeline processing. This is the case of a proper assessment of the ob ject coordinates (e.g. effects 7


Figure 4: Comparison of the average spectrum shifts before (black) and after (red) applying velocity and Solar Angle corrections. Numbers given in the plots are the median and the standard deviation of the distributions.

Figure 5: Comparison of the individual line shifts before (black) and after (red) applying velocity and the average Solar Angle corrections. Numbers given in the plots are the median and the standard deviation of the distributions.

8


of proper motion, the re-processing the data radial velocity of the s during the analysis of

case of extended ob jects), that can nevertheless be applied by the user with SAS. In case accurate wavelengths are needed, a correction for the tudied ob ject must be applied as well, but this should be left to the user the data.

· On the other hand, some important corrections can be easily implemented within SAS: ­ The wavelength scale should be referred to the barycenter of the Solar System. Therefore, a barycentric correction has to be applied to the observed wavelengths. This correction is the velocity of the Earth with respect to the barycentre of the Solar System pro jected in the direction of the target, that depends only on the date of the observation and the coordinates of the ob ject. It can amount up to ±2 m° at 20 °. A A ° ­ The correction for dependence of the wavelength scale with Solar Angle (up to ±18 mA, depending on instrument and spectral order).

5

References

Ayres, T. et al.,2001, ApJ, 549, 554 Coia, D. and Pollock, A. 2007, XMM-SOC-CAL-TN-0079 [CP07] Coia, D. and Pollock, A. 2008, XMM-SOC-CAL-TN-0080 Gonz´lez-Riestra, R. 2008, XMM-SOC-CAL-TN-0082 [GR08] a Hussain, G. et al. 2005, ApJ, 621, 999 Ishibashi, K. et al. 2006, ApJ, 644, 117 Kaastra, J. et al. 2001, A&A, 534 Lorente, R. et al. 2003, XMM-SOC-CAL-TN-0041 Nordstroem, B. et al. 2004, A&A, 418, 989

9


6

App endix: Tables and Figures
Table 6: List of Observations Obsid 1219201 1219201 1237202 1237202 1237202 1237202 1261302 1261302 1239401 1239401 1239402 1239402 1239402 1239402 1237203 1237203 1331201 1331201 1331207 1331207 1345203 1345203 1345403 1345403 1345401 1345401 1347201 1347201 1345207 1345207 1345404 1345404 1345405 1345405 1345213 1345213 1345214 1345214 1345215 1345215 1345216 1345216 1345406 1345406 1347204 1347204 1345218 1345218 1345217 1345217 1345220 1345220 Expid R1S007 R2S002 R1S001 R1S008 R2S002 R2S009 R1S001 R2S002 R1S004 R2S005 R1S004 R1S006 R2S005 R2S007 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S007 R2S008 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S007 R2S008 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 Target Capella Capella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor Procyon Procyon Procyon Procyon Procyon Procyon AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 HR 1099 HR 1099 HR 1099 Capella Capella AB Dor AB Dor HR 1099 HR 1099 HR 1099 HR 1099 AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 HR 1099 Capella Capella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor Date 0 0 -0 3 0 0 -0 3 0 0 -0 5 0 0 -0 5 0 0 -0 5 0 0 -0 5 0 0 -0 6 0 0 -0 6 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 2 0 0 -1 2 0 0 -1 2 0 0 -1 2 0 1 -0 1 0 1 -0 1 0 1 -0 2 0 1 -0 2 0 1 -0 2 0 1 -0 2 0 1 -0 3 0 1 -0 3 0 1 -0 5 0 1 -0 5 0 1 -0 8 0 1 -0 8 0 1 -0 8 0 1 -0 8 0 1 -1 0 0 1 -1 0 0 1 -1 2 0 1 -1 2 0 2 -0 4 0 2 -0 4 0 2 -0 6 0 2 -0 6 0 2 -0 8 0 2 -0 8 0 2 -1 0 0 2 -1 0 0 2 -1 1 0 2 -1 1 0 2 -1 1 0 2 -1 1 0 2 -1 2 0 2 -1 2 Rev 54 54 72 72 72 72 91 91 160 160 160 160 160 160 162 162 185 185 185 185 205 205 214 214 221 221 232 232 266 266 310 310 310 310 338 338 375 375 429 429 462 462 495 495 517 517 532 532 537 537 546 546 Texp (sec) 52900 51800 49000 11800 47500 11500 57800 56000 45100 44200 43700 16300 42500 16000 57600 56000 57000 55200 8800 8400 51100 49600 3600 3500 42500 41300 30100 29200 48500 47200 25700 25000 10500 10200 38700 37600 5000 4600 51900 50400 43200 42000 35000 34000 32200 31300 19500 18800 19800 19800 19800 19800 Beta 78 78 87 87 87 87 88 88 94 94 94 95 94 95 93 93 91 91 91 91 89 89 93 93 79 79 87 87 88 88 93 93 93 93 93 93 91 91 87 87 89 89 97 97 109 109 93 93 93 93 92 92 Vbar -2 7 -2 7 1 1 1 1 2 2 29 29 29 29 29 29 -1 -1 -2 -2 -2 -2 -2 -2 -2 9 -2 9 -2 9 -2 9 -2 8 -2 8 1 1 28 28 28 28 0 0 -2 -2 0 0 2 2 28 28 26 26 -1 -1 -1 -1 -1 -1
y

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 2 2 0 0 2 2 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 2 2 0 0 0 0 1 1 0 0

5 5 1 1 1 1 7 7 3 3 3 4 3 4 7 7 1 1 1 1 0 0 7 7 2 2 5 5 2 2 8 8 8 8 3 3 6 6 2 2 8 8 2 2 5 5 5 5 5 5 3 3 10

Offset 22 22 9 9 9 9 9 9 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 22 22 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 1 1 0 0 0 0 0 0


Table 6 ­ continued from previous page Obsid 1345221 1345221 1345222 1345222 1345223 1345223 1345224 1345224 1603625 1603625 1603626 1603626 1603627 1603627 1603627 1603627 1603628 1603628 1345407 1345407 1347208 1347208 1347208 1345408 1345408 1347215 1347215 1345409 1345409 1347216 1347216 1347217 1347217 1603630 1603630 1603632 1603632 1347220 1347220 4125801 4125801 1347221 1347221 4155801 4155801 4155802 4155802 4155803 4155803 4125802 4125802 5107801 5107801 4125803 Expid R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1U002 R2U002 R1S001 R2S002 R1S001 R1S014 R2S015 R2S016 R1S001 R2S016 R1S001 R2S002 R1S007 R2S008 R2U002 R1S001 R2S002 R1S007 R2S008 R1S001 R2S002 R1S007 R2S008 R1S007 R2S008 R1S001 R2S016 R1S001 R2S016 R1S007 R2S008 R1S004 R2S005 R1S007 R2S008 R1S001 R2S002 R1S001 R2S002 R1S001 R2S002 R1S004 R2S005 R1S007 R2S008 R1S004 Target AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 HR 1099 Capella Capella Capella HR 1099 HR 1099 Capella Capella HR 1099 HR 1099 Capella Capella Capella Capella AB Dor AB Dor AB Dor AB Dor Capella Capella AB Dor AB Dor Capella Capella Procyon Procyon Procyon Procyon Procyon Procyon AB Dor AB Dor Capella Capella AB Dor Date 0 2 -1 2 0 2 -1 2 0 3 -0 1 0 3 -0 1 0 3 -0 3 0 3 -0 3 0 3 -0 5 0 3 -0 5 0 3 -0 8 0 3 -0 8 0 3 -0 8 0 3 -0 8 0 3 -1 0 0 3 -1 0 0 3 -1 0 0 3 -1 0 0 3 -1 2 0 3 -1 2 0 4 -0 2 0 4 -0 2 0 4 -0 4 0 4 -0 4 0 4 -0 4 0 4 -0 8 0 4 -0 8 0 4 -0 9 0 4 -0 9 0 5 -0 1 0 5 -0 1 0 5 -0 3 0 5 -0 3 0 5 -0 3 0 5 -0 3 0 5 -0 4 0 5 -0 4 0 5 -1 0 0 5 -1 0 0 6 -0 3 0 6 -0 3 0 6 -1 2 0 6 -1 2 0 7 -0 2 0 7 -0 2 0 7 -0 4 0 7 -0 4 0 7 -0 4 0 7 -0 4 0 7 -0 4 0 7 -0 4 0 7 -0 7 0 7 -0 7 0 7 -0 8 0 7 -0 8 0 8 -0 1 Rev 560 560 572 572 605 605 636 636 668 668 668 668 709 709 709 709 732 732 766 766 790 790 790 857 857 871 871 942 942 971 971 972 972 981 981 1072 1072 1150 1150 1293 1293 1319 1319 1342 1342 1342 1342 1342 1342 1393 1393 1413 1413 1478 Texp (sec) 48800 48800 51200 51200 48700 48700 19200 19200 13100 13100 23600 23600 24400 26400 24700 26100 53200 53200 40200 40200 62600 1700 60600 51700 51600 67900 67800 55300 55300 23800 23800 16700 16700 51700 51600 49700 49600 59300 59300 44900 44800 63800 59300 44500 44500 33800 33800 38800 38800 48700 48700 59900 60000 48700 Beta 90 90 89 89 87 87 88 88 91 91 91 91 93 93 93 93 92 92 87 87 71 71 71 89 89 87 87 101 101 75 75 73 73 87 87 93 93 82 82 90 90 108 108 98 98 98 98 97 97 91 91 74 74 90 Vbar -2 -2 -2 -2 0 0 1 1 2 2 2 2 0 0 0 0 -2 -2 -2 9 -2 9 -2 6 -2 6 -2 6 28 28 28 28 -2 8 -2 8 -2 7 -2 7 -2 6 -2 6 0 0 0 0 -2 7 -2 7 -2 -2 -2 6 -2 6 -2 8 -2 8 -2 8 -2 8 -2 8 -2 8 2 2 26 26 -2
y

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 2 2 3 3 3 3 0 0 0 0 2 2 2 2 0 0 1 1 0 0 0 1 1 1 1 2 2 2 2 3 3 1 1 1 1 2 2 3 3 2 2 0 0 0 0 0 0 1 1 2 2 0

0 0 3 3 0 0 1 1 2 2 2 2 3 4 3 4 8 8 4 4 1 1 1 3 3 0 0 9 9 8 8 1 1 8 8 6 6 0 0 1 1 0 0 7 7 8 8 8 8 9 9 7 7 3

Offset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 1 2 2 1 1 2 2 2 2 0 0 0 0 3 3 0 0 3 3 16 16 9 9 10 10 0 0 4 4 0

11


Figure 6: Line shifts: RGS1 Order 1. Comparison of the shifts measured by CP07 with this work, with and without velocity correction. Numbers given in the plots are the median and the standard deviation of the distributions. Table 6 ­ continued from previous page Obsid 4125803 5107802 5107802 4125804 4125804 5107804 5107804 4125806 4125806 5107805 5107805 4125807 4125807 4125807 4125807 Expid R2S005 R1S007 R2S008 R1S004 R2S005 R1S007 R2S008 R1S004 R2S005 R1S007 R2S008 R1S004 R1U002 R2S005 R2U002 Target AB Dor Capella Capella AB Dor AB Dor Capella Capella AB Dor AB Dor Capella Capella AB Dor AB Dor AB Dor AB Dor Date 0 8 -0 1 0 8 -0 9 0 8 -0 9 0 9 -0 1 0 9 -0 1 0 9 -0 9 0 9 -0 9 1 0 -0 1 1 0 -0 1 1 0 -0 8 1 0 -0 8 1 1 -0 1 1 1 -0 1 1 1 -0 1 1 1 -0 1 -1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 2 2 1 1 2 2 0 0 0 0

3 7 7 4 4 9 9 1 1 4 4 2 2 2 2

Rev 1478 1607 1607 1662 1662 1796 1796 1848 1848 1961 1961 2027 2027 2027 2027

Texp (sec) 48700 54000 54100 47300 47000 61500 61600 49700 49800 59500 59600 1400 55900 1400 55500

Beta 90 93 93 90 90 103 103 90 90 71 71 90 90 90 90

Vbar -2 27 27 -2 -2 26 26 -2 -2 25 25 -2 -2 -2 -2

y

Offset 0 4 4 0 0 5 5 0 0 5 5 0 0 0 0

Vbary : Barycentric velocity correction (km s Offset: Offset from boresight (arcsec)

)

Table 7: Line shifts: RGS1 Order 1 Obsid 121920 123720 126130 123940 123940 Target Capella AB Dor AB Dor Procyon Procyon Rev 54 72 91 160 160 CP 0 7 4.4 8.2 4.8 -0.2 -3.3 12 GR1 8.6±0.3 4.8±0.6 4.7±0.6 -2.5±0.9 -6.6±0.9 2 (2.8) (4.5) (4.1) (5.0) (5.6) GR12v 5.2±0.3 (3.5) 3.1±0.6 (5.1) 3.0±0.6 (4.6) 0.1±0.9 (4.3) -4.0±0.9 (5.1) nl 8 7 7 4 4

0 0 0 0 0

1 2 2 1 2


Table 7 ­ continued from previous page Obsid 123720 133120 133120 134520 134540 134720 134520 134540 134540 134521 134521 134521 134540 134720 134521 134521 134522 134522 134522 134522 134522 160362 160362 160362 160362 134540 134720 134540 134721 134540 134721 134721 160363 160363 134722 412580 134722 415580 415580 415580 412580 510780 412580 510780 412580 510780 412580 510780 412580 Target AB Dor AB Dor AB Dor AB Dor HR 1099 Capella AB Dor HR 1099 HR 1099 AB Dor AB Dor AB Dor HR 1099 Capella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 Capella HR 1099 Capella HR 1099 Capella Capella AB Dor AB Dor Capella AB Dor Capella Procyon Procyon Procyon AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Rev 162 185 185 205 221 232 266 310 310 338 429 462 495 517 532 537 546 560 572 605 636 668 668 709 732 766 790 857 871 942 971 972 981 1072 1150 1293 1319 1342 1342 1342 1393 1413 1478 1607 1662 1796 1848 1961 2027 CP 0 7 1.2 0.1 4.4 -4.3 10.8 2.9 8.6 8.6 17.0 17.0 10.4 8.6 -3.3 -1.5 11.9 6.4 -6.2 -4.7 4.4 8.9 19.4 3.8 7.0 3.2 -8.0 10.5 6.8 2.1 -10.3 11.6 13.3 10.3 5.8 5.3 -8.3 -13.1 5.8 1.8 -1.7 12.6 GR1 2.2±0.5 0.3±0.5 4.3±1.3 0.1±0.6 9.3±0.5 5.6±0.4 7.6±0.7 7.3±0.8 13.8±1.2 13.8±0.6 11.0±0.5 8.1±0.6 -1.8±0.6 2.1±0.3 10.8±0.8 7.6±0.8 -2.3±0.8 2.9±0.5 3.4±0.6 7.2±0.6 15.4±0.9 3.7±1.2 8.1±0.8 3.7±0.8 -5.2±0.6 3.8±0.6 13.3±0.3 5.1±0.5 8.0±0.3 -7.3±0.7 14.0±0.4 15.8±0.4 8.4±0.6 6.1±0.6 11.2±0.3 -4.8±0.6 -8.2±0.3 4.1±1.2 -1.1±1.3 -3.9±1.1 7.4±0.5 17.9±0.3 -6.1±0.6 2.7±0.3 -1.7±0.6 -4.6±0.3 -1.5±0.6 13.0±0.3 6.9±0.5 2 (4.5) (3.7) (6.0) (4.5) (2.3) (4.1) (5.0) (3.5) (3.8) (4.3) (5.3) (2.4) (6.9) (3.9) (2.1) (6.0) (3.3) (4.9) (2.6) (2.7) (6.9) (3.6) (3.3) (3.1) (1.4) (2.3) (4.0) (5.5) (4.3) (5.0) (4.1) (7.0) (2.0) (1.2) (3.0) (2.2) (1.8) (2.1) (0.7) (5.2) (1.8) (5.0) (3.3) (1.8) (2.3) (2.5) (3.4) (3.0) (3.6) GR12v 0.2±0.5 (5.2) -1.8±0.5 (4.3) 2.3±1.3 (6.1) -2.1±0.6 (5.1) 8.5±0.5 (2.6) 2.2±0.4 (4.7) 5.7±0.7 (5.4) 10.1±0.8 (3.1) 16.5±1.2 (3.9) 11.8±0.6 (4.7) 9.1±0.5 (5.7) 6.3±0.6 (2.9) 1.0±0.6 (6.0) 1.8±0.3 (4.0) 8.9±0.8 (2.2) 5.5±0.8 (5.3) -4.4±0.8 (2.7) 0.9±0.5 (5.2) 1.3±0.6 (3.1) 5.1±0.6 (2.4) 13.5±0.9 (7.2) 2.0±1.2 (3.7) 6.2±0.8 (3.0) 1.7±0.8 (3.0) -7.3±0.6 (1.4) 2.9±0.6 (2.1) 10.1±0.3 (2.7) 7.9±0.5 (5.9) 7.9±0.3 (4.3) -8.1±0.7 (4.9) 10.8±0.4 (3.4) 12.5±0.4 (5.7) 6.5±0.6 (1.6) 4.2±0.6 (1.6) 8.0±0.3 (2.0) -6.8±0.6 (2.2) -11.5±0.3 (1.2) 2.4±1.2 (2.1) -2.8±1.3 (0.8) -5.6±1.1 (4.8) 5.6±0.5 (1.7) 17.7±0.3 (4.9) -8.2±0.6 (3.2) 2.6±0.3 (1.9) -3.7±0.6 (2.3) -4.8±0.3 (2.5) -3.5±0.6 (2.7) 12.8±0.3 (2.9) 4.9±0.5 (4.0) nl 6 7 3 6 6 7 6 6 4 6 6 6 6 7 4 6 6 6 6 6 5 4 6 6 6 6 8 7 7 7 7 7 6 6 5 5 5 3 3 4 5 7 6 6 6 7 6 7 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 7 3 1 1 7 4 5 3 5 6 6 4 8 7 0 1 2 3 4 5 6 7 8 7 8 8 5 9 6 7 0 2 0 1 1 1 2 3 2 1 3 2 4 4 6 5 7

13


Figure 7: As Fig. 6 for RGS2 Order 1. Table 8: Line shifts: RGS2 Order 1 Obsid 121920 123720 126130 123940 123940 123940 123720 133120 133120 134520 134540 134540 134720 134520 134540 134540 134521 134521 134521 134521 134540 134720 134521 134521 134522 134522 134522 134522 134522 Target Capella AB Dor AB Dor Procyon Procyon Procyon AB Dor AB Dor AB Dor AB Dor HR 1099 HR 1099 Capella AB Dor HR 1099 HR 1099 AB Dor AB Dor AB Dor AB Dor HR 1099 Capella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor Rev 54 72 91 160 160 160 162 185 185 205 214 221 232 266 310 310 338 375 429 462 495 517 532 537 546 560 572 605 636 CP 0 7 9.5 12.2 10.1 3.1 -0.6 -0.6 6.6 5.4 4.9 2.4 4.2 17.3 9.0 13.3 14.5 21.5 20.7 14.3 14.0 16.0 -0.2 3.1 17.4 11.3 0.7 1.4 11.1 15.5 26.7 GR1 10.9±0.3 8.5±0.6 9.5±0.5 -1.1±1.3 -0.4±1.2 -4.4±2.1 6.8±0.5 5.5±0.5 7.0±1.2 2.7±0.6 6.9±1.6 14.5±0.5 10.5±0.4 11.9±0.6 13.8±0.7 17.4±1.2 17.9±0.6 16.0±1.7 13.5±0.6 13.7±0.6 2.3±0.6 6.7±0.4 14.0±0.7 11.3±0.8 1.8±0.8 2.5±0.5 9.5±0.5 12.8±0.5 20.8±0.9 2 (2.9) (5.0) (4.6) (7.0) (8.5) (4.9) (2.0) (2.3) (6.4) (4.0) (1.6) (3.0) (1.6) (4.5) (4.5) (4.7) (4.0) (1.0) (4.4) (4.0) (5.2) (4.4) (5.9) (2.5) (5.2) (5.1) (4.2) (4.2) (3.5) GR12v 7.6±0.3 (3.7) 6.8±0.6 (5.8) 7.8±0.5 (5.2) 1.8±1.3 (6.2) 2.3±1.2 (7.7) -1.5±2.1 (3.8) 5.0±0.5 (2.6) 3.7±0.5 (2.7) 5.0±1.2 (7.2) 0.9±0.6 (4.7) 6.2±1.6 (1.5) 13.8±0.5 (3.1) 7.3±0.4 (2.9) 10.2±0.6 (5.0) 16.2±0.7 (4.1) 19.9±1.2 (3.1) 16.1±0.6 (4.4) 14.2±1.7 (1.5) 11.8±0.6 (5.2) 12.0±0.6 (4.7) 4.7±0.6 (4.2) 6.5±0.4 (4.5) 12.1±0.7 (5.5) 9.4±0.8 (2.8) -0.1±0.8 (5.0) 0.6±0.5 (4.8) 7.6±0.5 (3.5) 11.0±0.5 (3.6) 19.1±0.9 (2.9) nl 7 6 6 3 3 2 6 6 5 6 3 6 6 6 6 3 6 2 6 6 6 7 5 6 6 6 6 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 1 2 2 3 1 7 3 3 1 1 7 4 5 3 4 5 6 6 4 8 7 0 1 2 3 4

14


Table 8 ­ continued from previous page Obsid 160362 160362 160362 160362 134540 134720 134540 134721 134540 134721 134721 160363 160363 134722 412580 134722 415580 415580 415580 412580 510780 412580 510780 412580 510780 412580 510780 412580 Target AB Dor AB Dor AB Dor AB Dor HR 1099 Capella HR 1099 Capella HR 1099 Capella Capella AB Dor AB Dor Capella AB Dor Capella Procyon Procyon Procyon AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Rev 668 668 709 732 766 790 857 871 942 971 972 981 1072 1150 1293 1319 1342 1342 1342 1393 1413 1478 1607 1662 1796 1848 1961 2027 CP 0 7 8.8 14.1 6.0 0.4 19.7 10.7 8.5 -4.8 15.6 19.7 15.6 12.5 17.8 -2.5 -11.3 11.8 6.8 -1.5 15.6 GR1 7.4±1.0 12.6±0.7 5.7±0.7 1.2±0.5 7.5±0.5 19.9±0.3 9.5±0.4 12.9±0.3 -3.3±0.4 19.6±0.4 20.4±0.4 13.2±0.5 12.2±0.5 18.2±0.4 -0.9±0.6 -3.7±0.4 9.9±1.4 3.4±1.7 -0.7±1.7 11.3±0.5 21.9±0.3 -1.5±0.6 7.4±0.3 3.3±0.6 1.8±0.3 1.3±0.6 18.5±0.3 10.5±0.6 2 (4.7) (6.2) (3.8) (2.9) (4.8) (7.3) (3.3) (2.4) (3.2) (4.9) (2.9) (3.3) (2.9) (5.3) (1.5) (1.8) (2.8) (2.9) (6.2) (3.1) (2.6) (2.1) (1.7) (3.3) (2.1) (3.4) (3.1) (4.3) GR12v 5.7±1.0 (4.2) 10.9±0.7 (5.7) 4.0±0.7 (3.7) -0.7±0.5 (2.2) 6.8±0.5 (4.5) 16.7±0.3 (5.8) 11.9±0.4 (3.0) 12.7±0.3 (2.3) -4.0±0.4 (3.3) 16.5±0.4 (3.4) 17.3±0.4 (1.8) 11.5±0.5 (3.1) 10.4±0.5 (2.1) 14.7±0.4 (3.4) -2.8±0.6 (1.9) -7.0±0.4 (1.9) 7.8±1.4 (2.2) 1.4±1.7 (3.3) -2.8±1.7 (6.7) 9.6±0.5 (2.9) 21.8±0.3 (2.5) -3.4±0.6 (1.6) 7.3±0.3 (1.7) 1.5±0.6 (2.7) 1.7±0.3 (2.0) -0.6±0.6 (2.7) 18.3±0.3 (3.0) 8.6±0.6 (3.6) nl 4 6 6 6 6 6 7 6 7 7 6 6 6 5 6 6 3 3 3 6 6 6 6 6 6 6 7 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 6 7 8 7 8 8 5 9 6 7 0 2 0 1 1 1 2 3 2 1 3 2 4 4 6 5 7

Table 9: Line shifts: RGS1 Order 2 Obsid 121920 123720 126130 123720 133120 133120 134520 134540 134720 134520 134540 134540 134521 134521 134521 134521 134540 134720 134521 Target Capella AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 Capella AB Dor HR 1099 HR 1099 AB Dor AB Dor AB Dor AB Dor HR 1099 Capella AB Dor Rev 54 72 91 162 185 185 205 221 232 266 310 310 338 375 429 462 495 517 532 CP 0 7 1.7 2.6 -0.2 0.3 -0.7 -0.2 -4.3 4.4 0.2 2.2 2.4 8.1 6.2 1.1 1.4 3.8 -4.8 -3.5 1.2 15 GR1 2.4±0.4 2.4±0.9 0.9±0.9 1.9±0.8 0.9±0.7 1.3±2.1 -1.6±0.7 4.8±0.7 1.0±0.6 3.9±0.8 3.8±1.0 10.0±1.6 5.4±0.9 2.1±3.2 4.1±0.8 3.9±0.8 -3.2±0.8 -1.8±0.6 3.7±1.3 2 (5.3) (2.7) (4.4) (3.0) (2.1) (0.8) (2.2) (2.6) (2.9) (1.8) (6.9) (4.6) (1.5) (3.8) (3.9) (2.7) (4.5) (5.9) (2.0) GR12v -0.5±0.4 (5.0) 1.0±0.9 (3.0) -0.6±0.9 (4.5) 0.3±0.8 (3.2) -0.7±0.7 (2.3) -0.2±2.1 (0.3) -3.2±0.7 (2.5) 4.1±0.7 (2.5) -1.9±0.6 (3.5) 2.4±0.8 (2.1) 5.9±1.0 (6.7) 12.0±1.6 (3.9) 3.9±0.9 (1.9) 0.4±3.2 (4.4) 2.6±0.8 (4.1) 2.5±0.8 (3.0) -1.0±0.8 (4.1) -2.0±0.6 (5.9) 2.1±1.3 (2.5) nl 5 3 3 3 4 2 3 4 5 3 3 2 3 2 3 3 3 5 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 3 1 7 3 1 1 7 4 5 3 4 5 6 6 4 8


Table 9 ­ continued from previous page Obsid 134521 134522 134522 134522 134522 134522 160362 160362 160362 160362 134540 134720 134540 134721 134540 134721 134721 160363 160363 134722 412580 134722 412580 510780 412580 510780 412580 510780 412580 510780 Target AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 Capella HR 1099 Capella HR 1099 Capella Capella AB Dor AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella Rev 537 546 560 572 605 636 668 668 709 732 766 790 857 871 942 971 972 981 1072 1150 1293 1319 1393 1413 1478 1607 1662 1796 1848 1961 CP 0 7 6.3 0.7 0.4 6.6 8.6 9.9 8.1 3.8 -0.7 8.4 5.8 3.9 -3.5 9.5 8.6 7.9 6.6 7.2 -2.5 -4.2 6.3 GR1 6.8±1.2 2.6±1.3 1.7±0.7 5.5±0.8 8.2±0.7 8.9±1.3 4.1±1.6 7.9±1.2 4.9±1.1 0.1±0.7 4.7±0.7 9.9±0.4 4.3±0.7 3.9±0.4 -1.8±0.7 9.8±0.7 10.9±0.8 7.0±0.8 5.8±0.8 8.4±0.5 1.2±1.1 -2.6±0.4 4.2±1.2 8.9±0.5 -2.2±0.9 1.6±0.4 2.2±0.8 -1.5±0.4 1.3±0.9 8.1±0.5 2 (3.1) (4.5) (1.9) (2.4) (3.7) (1.5) (3.7) (0.6) (2.6) (1.6) (5.4) (3.2) (3.2) (4.0) (1.0) (3.3) (5.3) (3.2) (1.4) (6.9) (4.4) (2.2) (1.7) (2.6) (2.7) (4.1) (0.4) (4.1) (1.3) (3.5) GR12v 5.2±1.2 (2.7) 1.1±1.3 (4.3) 0.0±0.7 (1.8) 3.9±0.8 (2.4) 6.6±0.7 (3.6) 7.4±1.3 (1.7) 2.7±1.6 (3.2) 6.5±1.2 (0.7) 3.3±1.1 (2.2) -1.5±0.7 (1.8) 4.1±0.7 (5.3) 7.1±0.4 (2.5) 6.4±0.7 (2.8) 3.8±0.4 (4.0) -2.3±0.7 (1.1) 7.1±0.7 (3.1) 8.2±0.8 (4.7) 5.5±0.8 (3.2) 4.3±0.8 (1.3) 5.8±0.5 (6.4) -0.3±1.1 (4.1) -5.3±0.4 (1.6) 3.0±1.2 (1.5) 8.7±0.5 (2.6) -3.9±0.9 (2.7) 1.5±0.4 (4.1) 0.6±0.8 (0.3) -1.7±0.4 (4.1) -0.4±0.9 (0.9) 7.9±0.5 (3.5) nl 3 3 4 4 3 3 2 3 3 3 4 5 4 5 3 5 5 3 4 3 3 4 2 3 3 5 3 5 3 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 1 2 3 4 5 6 7 8 7 8 8 5 9 6 7 0 2 0 1 1 2 1 3 2 4 4 6 5

Table 10: Line shifts: RGS2 Order 2 Obsid 121920 123720 126130 123720 133120 134520 134540 134720 134520 134540 134521 134521 134521 134540 134720 134521 134521 Target Capella AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 Capella AB Dor HR 1099 AB Dor AB Dor AB Dor HR 1099 Capella AB Dor AB Dor Rev 54 72 91 162 185 205 221 232 266 310 338 429 462 495 517 532 537 CP 0 7 1.1 7.1 2.5 2.1 1.9 -0.7 5.8 1.7 4.9 2.9 8.5 4.1 8.1 -1.6 -1.6 7.5 8.2 16 GR1 2.3±0.5 2.0±1.1 3.7±1.1 2.6±1.0 2.3±0.9 0.2±0.9 6.6±0.9 3.1±0.7 5.8±1.1 3.7±1.2 6.9±1.3 5.0±1.0 8.2±1.0 -0.4±1.0 -1.0±0.6 8.5±1.6 7.7±1.7 2 (3.0) (4.9) (2.0) (1.2) (2.1) (1.5) (2.1) (2.7) (3.8) (2.4) (2.3) (1.2) (1.0) (1.4) (5.3) (3.1) (4.2) GR12v -0.4±0.5 (2.8) 0.7±1.1 (5.0) 2.5±1.1 (2.2) 1.3±1.0 (0.9) 1.0±0.9 (2.3) -1.2±0.9 (1.7) 6.0±0.9 (2.1) 0.4±0.7 (2.3) 4.5±1.1 (4.0) 5.4±1.2 (2.7) 5.6±1.3 (2.5) 3.8±1.0 (1.0) 7.0±1.0 (1.2) 1.4±1.0 (1.2) -1.2±0.6 (5.4) 7.3±1.6 (3.3) 6.4±1.7 (4.0) nl 4 3 2 2 3 3 3 4 3 2 3 3 2 4 4 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 3 1 3 1 1 7 4 3 5 6 6 4 8 7


Table 10 ­ continued from previous page Obsid 134522 134522 134522 134522 134522 160362 160362 160362 160362 134540 134720 134540 134721 134540 134721 134721 160363 160363 134722 412580 134722 412580 510780 412580 510780 412580 510780 412580 510780 Target AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor AB Dor HR 1099 Capella HR 1099 Capella HR 1099 Capella Capella AB Dor AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella AB Dor Capella Rev 546 560 572 605 636 668 668 709 732 766 790 857 871 942 971 972 981 1072 1150 1293 1319 1393 1413 1478 1607 1662 1796 1848 1961 CP 0 7 -0.5 2.6 6.8 7.8 8.5 9.0 4.4 2.0 10.7 5.7 5.0 -1.6 11.8 11.8 8.2 8.1 9.3 0.1 -3.4 9.5 GR1 3.0±1.7 2.4±0.9 5.4±1.1 7.9±0.9 10.7±1.7 5.0±2.0 9.0±1.4 3.0±1.6 2.4±0.9 5.5±0.9 12.2±0.4 6.1±0.8 6.9±0.4 -0.7±0.7 12.2±0.7 12.3±0.8 8.3±1.1 5.8±1.0 9.8±0.4 0.5±1.1 -2.5±0.4 7.0±1.1 11.2±0.4 1.0±1.1 3.4±0.5 2.1±1.1 -0.0±0.5 2.7±1.2 9.8±0.5 2 (2.1) (0.4) (1.7) (5.1) (2.4) (0.8) (1.4) (0.3) (2.9) (4.9) (1.8) (4.1) (1.4) (3.1) (2.6) (2.2) (5.0) (0.5) (1.3) (2.4) (2.1) (2.1) (5.5) (1.2) (3.3) (1.0) (3.6) (0.6) (1.8) GR12v 1.7±1.7 (1.9) 1.0±0.9 (0.4) 4.1±1.1 (1.5) 6.6±0.9 (5.2) 9.5±1.7 (2.6) 3.8±2.0 (0.6) 7.8±1.4 (1.6) 1.7±1.6 (0.1) 1.1±0.9 (3.1) 4.9±0.9 (5.0) 9.5±0.4 (1.4) 7.9±0.8 (3.8) 6.9±0.4 (1.4) -1.2±0.7 (3.1) 9.5±0.7 (2.7) 9.6±0.8 (2.3) 7.0±1.1 (5.2) 4.5±1.0 (0.4) 7.1±0.4 (1.3) -0.8±1.1 (2.2) -5.2±0.4 (1.6) 5.8±1.1 (1.9) 11.1±0.4 (5.5) -0.4±1.1 (0.9) 3.3±0.5 (3.3) 0.8±1.1 (1.3) -0.2±0.5 (3.5) 1.4±1.2 (0.8) 9.6±0.5 (1.8) nl 2 3 2 3 2 2 3 2 3 3 3 2 4 4 3 3 3 3 3 2 4 2 4 3 4 3 4 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 7 8 8 5 9 6 7 0 2 0 1 1 2 1 3 2 4 4 6 5

shifts in m°, given as average±error (rms) A nl: number of lines measured in the spectrum. CP07: Data from Coia and Pollock 2007. GR12: This work without velocity correction. GR12v:This work, with star+barycenter velocity correction..

17


Figure 8: As Fig. 6 for RGS1 Order 2.

Figure 9: As Fig. 6 for RGS2 Order 2.

18