Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://acat02.sinp.msu.ru/presentations/kosov/vit.ps
Äàòà èçìåíåíèÿ: Wed Jun 26 13:00:04 2002
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 20:01:57 2012
Êîäèðîâêà:
Chiral
Invariant
Phase
Space
(CHIPS)
model.
Chiral
Invariant
Phase
Space
(CHIPS)
model.
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
June
25,
2002
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
1

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Virtual
Thermodynamics
(VIT)
There
are
three
levels
of
cognition
of
nature:
1.
Atomic
mass
is
conserved,
but
energy
is
not.
2.
Atomic
mass
and
entropy
are
not
conserved,
but
energy,
which
is
equivalent
to
mass
(E0
=
mc
2
),
is
conserved.
3.
Is
entropy
conserved?
(#E
=
Tc
·#S).
Spacial
vacuum
is
filled
by
quark­gluon
condensates.
Binding
energy
of
vacuum
partons
exceeds
their
total
kinetic
energy
(
##
p
2 i
c
2
+m
2 i
c
4
).
Energy
density
of
space
(nonperturbative
vacuum)
is
negative.
Hadrons
(all
particles?)
are
drops
of
primordial
emptiness
(perturbative
vacuum)
filled
by
marked
partons
(color,
charge).
The
energy
density
of
particles
is
positive.
What
is
the
total
energy
of
theWorld?
Can
it
be
ZERO?
What
is
the
entropy
of
the
vacuum?
Negoentropy
(order)
disappears
in
the
world
of
particles.
Can
it
be
transformed
to
the
negoentropy
of
the
spacial
vacuum?
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
2

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
.
Critical
temperature
and
hadronic
masses
(be
published,
EPJA­1349);
.
CHIPS
dynamics
(phase
space
distribution
of
quark­partons);
.
p-

p
annihilation
at
rest
(Quasmon,
quark
fusion,
EPJA­8,217);
.
Inclusive
CHIPS
for
nuclear
fragmentation
(Phys.Rev.C,50,R541);
.
Evaporation
algorithm
(phase
space
of
nucleons,
EPJA­9,411);
.
Pion
capture
at
rest
(quark
exchange,
EPJA­9,
411);
.
Photonuclear
reactions
below
150
MeV
(EPJA­9,
421);
.
Fragmentation
of
Nuclear
Giant
Resonance
(under
development);
.
String+CHIPS
model
of
high
energy
nuclear
reactions
(MC2000);
.
Structure
Functions
of
nucleons
(submitted,
EPJA­1485);
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
3

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Masses
of
hadrons
#n(E)
=
#
#(
n
# i=1
Ei
-E)
#
3
(
n
# i=1
# p
i
)
n
# i=1
d
3
# p
i
2Ei
.
Fn(#)
=
#
e
-#E
#n(E)
d
4
p,
#
=
1 Tc
,
Tc
=
221MeV
<
s
n
>=
n
# i=1
m
2 i
+2
n
# i=1
n
# j>i
(2T
c
+xi)(2Tc
+xj),
xi
=
mi
K0(mi#) K1(mi#)
.
#MCM
#
# i>j
<
#i
,#j
><
s
i
,
s
j
>
<
Ei
>
·
<
Ej
>
where
# i>j
<
s
i
,
s
j
>=
2
>-n· 2
>
2
,
<
#i
,#j
>=
-
<#
2
>
n-1
.
#MCE
=
0
for
hadrons
consisting
of
quark­partons
with
equal
masses.
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
4

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
H
M
exp
M
bag cur
|#M|
M
bag con
|#M|
M
Tc cur
|#M|
#
0
140
280
140
175
35
152
12
#
1232
1233
1
1233
1
1231
1
K
+
494
497
3
371
123
485
9
K
#0
896
928
32
925
29
899
3
#
1116
1105
11
1103
13
1123
7
#
+
1189
1144
45
1145
44
1182
7
#
#-
1387
1382
5
1381
6
1385
2
#
1019
1068
49
1063
44
1018
1
#
-
1321
1289
32
1286
35
1323
2
#
#-
1535
1529
6
1528
7
1533
2
#
-
1673
1672
1
1672
1
1674
1
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
5

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Basic
ideas
of
the
CHIPS
dynamics
2
>=
4N(N
-1)
·
T
2 c
,
(Tc
#
200MeV
)
(Quasmon)
dW kdk
#
#N-1(MN-1)
#
(MN-1)
2N-6
,
M
2
N-1
=M
2
-2kM,
dW kdk
#
(1-
2k M
)
N-3
(in
CMS
of
the
Quasmon,
Struct.
Functions)
atM
##,
N
##(relativistic
thermodynamics):
Tc
#
M
2N
-1
,
dW kdk
#
e
-
2(N-3)k M
#
e
-
2(N-3)k (2N-1)Tc
#
e
-
k Tc
.
For
lowM
discrete
masses
are
considered
(Q/H
duality),
for
high
M:
N1
=
[N],
N2
=
N1
+1,
P1
=
N2
-N,
P2
=
N
-N1.
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
6

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Pion
momentum
(GeV/c)
Pion
momentum
(GeV/c)
1/N
A
dN/dP
(Annihilation
­1
(GeV/c)
­1
)
Charged
pions
CHIPS
MC
p
--
p
data
Pion
multiplicity
dN/N
A
(Annihilation
­1
)
CHIPS
MC
p
--
p
data p
+
+p
­
+p
0
multiplicity
Kaon
Channels
10
­1
1
10
0
0.2
0.4
0.6
0.8
1
10
­2
10
­1
1
0
2
4
6
8
10
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
7

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Annihilation
Channels
Annihilation
Channels
Annihilation
Channels
dN/N
A
(Annihilation
­1
)
2p
0
p
+
p
­
3p
0
p
+
p
­
p
0
2p
+
2p
­
2p
+
2p
­
p
0
3p
+
3p
­
3p
+
3p
­
p
0
neutrals,
excl.
2p
0
,
3p
0
p
+
p
­
+
(neutrals,
excl.
p
0
)
2p
+
2p
­
+
(neutrals,
excl.
p
0
)
3p
+
3p
­
+
(neutrals,
excl.
p
0
)
4p
+
4p
­
+
X
K
0
K --
0
K
+
K
­
K
0
K --
0
p
0
K
+
K
­
p
0
K
­
+
K
SL
p
+
­
K
0
K --
0
+
(non­strange,
excl.
p
0
)
K
+
K
­
+
(non­strange,
excl.
p
0
)
K
+
­
K
SL
+
(non­strange,
excl.
p
­+
)
CHIPS
MC
points:
p
--
p
data
Exp.
sum
of
channels
=
0.972±0.011
MC
sum
of
channels
=
1.00000
10
­4
10
­3
10
­2
10
­1
1
2.5
5
7.5
10
12.5
15
17.5
20
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
8

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Annihilation
Channels
with
Two­Particle
Final
States
Annihilation
Channels
with
Two­Particle
Final
States
Annihilation
Channels
with
Two­Particle
Final
States
dN/N
A
(Annihilation
­1
)
p
0
p
0
p
+
p
­
K
0
K --
0
K
+
K
­
hp
0
hh
r
0
p
0
r
­
+
p
+
­
r
0
h
r
0
r
0
wp
0
wh
wr
0
ww
K*
0
K --
0
+
c.c.
K*
+
­
K
­
+
K*
0
K --
*
0
K*
+
­
K*
­
+
h¢p
0
h¢h
h¢r
0
h¢w
fp
0
fh
fr
0
fw
f
2
p
0
f
2
r
0
f
2
w
a
2
p
a
2
w
f
2
¢p
0
CHIPS
MC
points:
p
--
p
data
Exp.
sum
of
channels
=
0.239±0.009
MC
sum
of
channels
=
0.17445
10
­5
10
­4
10
­3
10
­2
10
­1
1
5
10
15
20
25
30
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
9

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
æs
¬
(GeV)
Pion
multiplicity
100
T
(MeV) 120 140
160
180
200
220
p
--
p
e
+
e
­
CHIPS
MC
0
2
4
6
8
10
12
14
0
1
2
3
4
5
6
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
10

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Inclusive
CHIPS
Baryons
(one
dimensional
consideration
of
quark
exchange):
k
+M
=
E
+q,
k
=
p-q
#
k
=
E
-M
+p
2
Mesons
(one
dimensional
consideration
of
quark
fusion):
k
+q
=
E,
k
-q
=
p
#
k
=
E
+p 2
Antibaryons
(antiquark­antidiquark
fusion):
k
+q
=M
+E,
k
-q
=
p
#
k
=
E
+M
+p
2
d# pdE
#
EXP
#
-
(k
-#)[1-
v
·
cos(#)]
T
#
1-v
2
#
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
11

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
p+Ta=h+X,
400
GeV,
90
o
10
­5
10
­4
10
­3
10
­2
10
­1
1
10
0
0.5
1
E
kin
,
GeV
(E/A)*d
3
s/d
3
p,
mb/GeV
2
10
­5
10
­4
10
­3
10
­2
10
­1
1
10
0.25
0.5
0.75
1
1.25
k=(E+p­B*M)/2,
GeV
(E/A)*d
3
s/d
3
p,
mb/GeV
2
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
12

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Evaporation
package
in
CHIPS

#2(W2)
#
#
W2,

#n(Wn)
=
#

#n-1(Wn-1)
·
#(Wn
-Wn-1
-Ekin)
#
EkindEkindWn-1

#n(Wn)
#W
3 2
n-
5 2
n
dN
#
EkindEkin
#
#
1-
Ekin Wn
#3 2
n-4
.
WA
=
U
·A+
Eexcitation
,
U
=
(1.7MeV
)
Uthresh
=
U
+Ubind
+ECB,
where
Ubind
is
a
separation
energy,
ECB
is
the
Coulomb
barrier
energy
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
13

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Nuclear
clusterization
Quark
exchange
forces
clusterize
nuclei.
P#
=
C
a #
·
#
#-1
(1+
#)
a-1
+##,
#
-clusterization
parameter,
#
#
­
clusterization
on
nuclear
surface,
#
#>2
=
0.
a
=
1-
n
# i=1
#
i
9
Be
12
C
28
Si
59
Co
181
Ta
#
1
0.45
0.40
0.35
0.33
0.33
#
2
0.15
0.15
0.05
0.03
0.02
#
5.00
5.00
5.00
5.00
5.00
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
14

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Pion
capture
on
59
Co
nucleus
neutrons
ÀE
kin
ß
e/m
=
73.1
/
68.3
MeV
protons
ÀE
kin
ß
e/m
=
10.5
/10.0
MeV
dN/pdE
(MeV
­2
Capture
­1
)
deuterons
ÀE
kin
ß
e/m
=
3.1
/
3.2
MeV
Helium­3
ÀE
kin
ß
e/m
=
0.2
/
0.3
MeV
tritium
ÀE
kin
ß
e/m
=
0.8
/
1.1
MeV k
=
(p+E
kin
)/2
(MeV)
Helium­4
ÀE
kin
ß
e/m
=
0.9
/
1.3
MeV
10
­9
10
­8
10
­7
10
­6
10
­5
10
­4
10
­3
10
­2
10
­1
0
200
400
10
­9
10
­8
10
­7
10
­6
10
­5
10
­4
10
­3
10
­2
10
­1
0
200
400
10
­9
10
­8
10
­7
10
­6
10
­5
10
­4
10
­3
10
­2
10
­1
0
200
400
10
­9
10
­8
10
­7
10
­6
10
­5
10
­4
10
­3
10
­2
10
­1
0
200
400
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
15

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Photonuclear
reactions
below
150
MeV
PC
1

1
)

CF
1
RQ(M
min
)
PC
2

2
)

CF
2
F(µ)
k
q
(w,q g
)
Leading
Fragmentation
Q(M)
CRQ(M
N­1
)
RQ(M
min
)
PC(µ) ”
CF(µ
c
)
F(µ)
k
q
Step
Fragmentation
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
16

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
12
C(g,p)
reaction
at
E
g
=
123
MeV
1.0 0.1
57°
1.0 0.1
77°
ds/p
p
dE
p
dW
p
(nb
MeV
­2
sr
­1
)
1.0 0.1
97°
1.0 0.1
117°
k
=
(p
p
+T
p
)/2
(MeV)
1.0 0.1
127°
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
12
C(g,p)
reaction
at
E
g
=
151
MeV
1.0 0.1
57°
1.0 0.1
77°
ds/p
p
dE
p
dW
p
(nb
MeV
­2
sr
­1
)
1.0 0.1
97°
1.0 0.1
117°
k
=
(p
p
+T
p
)/2
(MeV)
1.0 0.1
127°
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
10
­1
1
180
200
220
240
260
280
300
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
17

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
40
Ca(g,p)
spectral
cross
section
k
=
(p
p
+T
p
)/2
(MeV)
ds/p
p
dE
p
dW
p
(nb
MeV
­2
sr
­1
)
E
g
=60
MeV
Q
=
60
o
Q
=
150
o
Q
=
90
o
10
­2
10
­1
1
10
10
2
80
100
120
140
160
180
200
12
C(g
*
,p)
spectral
cross
section
k
=
(p
p
+T
p
)/2
(MeV)
Parallel
kinematics w
=
210
MeV
q
g
=
585
MeV
Q
qp
<

ds/p
p
dE
p
dw
dW
p
dW
e
(pb
MeV
­3
sr
­2
)
10
­3
10
­2
10
­1
1
100
200
300
400
500
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
18

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Photoneutron
production
part
of
total
photonuclear
cross
section
2002/04/10
19.27
0
0.2
0.4
0.6
0.8
1
20
30
40
E
g
(MeV)
s(g,nX)/s(g,tot)
9
Be
0
0.2
0.4
0.6
0.8
1
20
25
30
35
40
E
g
(MeV)
s(g,nX)/s(g,tot)
12
C
0
0.2
0.4
0.6
0.8
1
20
30
40
E
g
(MeV)
s(g,nX)/s(g,tot)
16
O
0
0.2
0.4
0.6
0.8
1
15
20
25
30
E
g
(MeV)
s(g,nX)/s(g,tot)
40
Ca
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
19

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
String+CHIPS
at
high
energies
#tot
=
#DD
+
#
# n=1
#n
.
d
3
#
h
dyd
2
p
T
=
#DD#
h
DD
+
#
# n=1
#n#
h n
,
(#
h
-
fragmentation
functions)
#n(z)
=
#P nz
#
1-
e
-z
n-1
# k=1
z
k k!
#
,
#P
=
8##P
s
#
z
=
2#PC·s
#
R
2
+#
#
ln(s)
,
#DD
=
(1-
1 C
)#P
#
f(
z 2
)-
f(z)
#
,
f(z)
=
#
# k=1
(-z)
k-1
k·k!
#Estring #z
=
1
GeV fm
(this
is
a
parameter),
#
#
T(b)db
2
=
A
Each
soft
particle
of
#
Ei
<
T(b) A
·
#Estring #z
creates
a
separate
Quasmon.
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
20

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
q
e
­
(E)
e
­
(E
/
)
P(M,0)
g(x,Q
2
) a
q q
--
e
­
(E)
e
­
(E
/
)
P(M,0)
g(x,Q
2
)
g b
q
q
--
e
­
e
­
e
­
e
­
P
P
g
g
c
q q
--
e
­
(E)
e
­
(E
/
)
P(M,0)
g(x,Q
2
)
g g g
g g
d
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
21

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Phenomenological
Approximation
of
Structure
Functions.
F2(x,Q
2
)
=
(2-#P
)(1-x)
N-2
#
e
2 S
·Q
2
m
2 #
+Q
2
x
1-#P
+e
2 h
·D
·N(N
-1)
·
x
#
e
2 p
(Q
2
)
=
1+(N
-3)e
2 S
(Q
2
)
N
,
e
2 d
(Q
2
)
=
5 6
+(N
-3)e
2 S
(Q
2
)
N
,#
=
ln(Q
2
)
e
2 S
=
e
2 e
-
e
2 e
-e
2 3
1+e
5(-.4-#)
+
e
2 e
-e
2 3
1+e
8(-.3-#)
-
e
2 e
-e
2 5
1+e
2.3(1.2-#)
+
e
2 e
-e
2 5
1+e
.5(7.7-#)
e
2 e
=
25 90
,
e
2 3
=
20 90
,
e
2 5
=
22 90
,
N(Q
2
)
=
3+0.4·ln
#
1+
Q
2
0.07
#
+
0.9 Q
2
,
#P
(Q
2
)
=
1.077·
#
1+
2Q
2
Q
2
+1.117
#
,
#P
(Q
2
)
=
1.094+ln
#
1+
Q
2
.65
#
,
Dd(Q
2
)
=
0.43-
0.1
1+
e
0.6·(2.5-Q
2
)
+
0.027
·
e
0.027·(17.-Q
2
)
1+e
17.·(17.-Q
2
)
.
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
22

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
10
­6
10
­5
10
­4
10
­3
x
F
2
(x)
Q
2
=
0.5
(GeV
2
)
H1(.5)
.4
.3
H1(.3)
.25
.2
.15
.11
.085
.065 .045
.23
.31
.43
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(.59) SLAC(.65)
ZEUS/H1(.6,.65) ZBPT(.65)
Q
2
=0.65
F
2
(x)
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(.8)
SLAC(.9)
ZEUS(.9)/H1(.85) NMC(.75)
Q
2
=0.85
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(1.1)
SLAC(1.1)
ZEUS(1.3)/H1(1.2) NMC(1.25)
Q
2
=1.1
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(1.5)
SLAC(1.5)
ZEUS/H1(1.5) NMC(1.75)
Q
2
=1.5
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(2.05) SLAC(2.)
ZEUS/H1(2.) Q
2
=2.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(2.8)
SLAC(2.5)
ZEUS/H1(2.5,3.) NMC(2.5)
EMC(2.5)
Q
2
=2.5
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(3.8)
SLAC(3.5)
ZEUS/H1(3.5) NMC(3.5)
EMC(3.5)
Q
2
=3.5
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
SLAC(4.5)
ZEUS/H1(4.5) NMC(4.5)
EMC(4.5)
Q
2
=4.5
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(5.24)
SLAC(5.5)
ZEUS/H1(5.5) NMC(5.5)
EMC(5.5)
Q
2
=5.5
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(7.16) BCDMS(7.5) SLAC(6.5)
ZEUS/H1(6.5,7.5) NMC(7.)
EMC(7)
Q
2
=7.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
BCDMS(8.75) SLAC(8.)
ZEUS/H1(8.5,9.) NMC(9.)
EMC(9.)
Q
2
=9.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(9.8)
BCDMS
(10.25) SLAC(10.)
ZEUS/H1(10.) Q
2
=10.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
BCDMS(11.75) SLAC(12.)
ZEUS/H1(12.) NMC(11.5)
EMC(11.5)
Q
2
=12.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(13.4)
BCDMS(13.3,15,17) SLAC(15)
ZEUS/H1(15,17) NMC(15)
EMC(15)
Q
2
=15.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(18.3) BCDMS(19,21.5) SLAC(20)
ZEUS/H1(18,20,22) NMC(20)
EMC(20)
Q
2
=20.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(25.1) BCDMS(25,28,32) SLAC(27)
ZEUS/H1(25,27,30) NMC(27)
EMC(27)
Q
2
=27.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(34.3,46.9) BCDMS(38,43,49) ZEUS/H1(35,45,50) NMC(36,48)
EMC(36,48)
Q
2
=45.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
E665(64.3)
BCDMS(57,65,75) ZEUS/H1(60,65,70) NMC(65)
EMC(65)
Q
2
=65.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
BCDMS(86,99,115)
ZEUS(90,120,125)
H1(80,90,120)
EMC(90,125)
Q
2
=100.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
BCDMS(175,230)
ZEUS(150,200,240)
H1(150,200)
EMC(170)
Q
2
=200.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(250,300,350) ZEUS(250,350)
Q
2
=300.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(400,500) ZEUS(450,480,500) Q
2
=450.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(650) ZEUS(650) Q
2
=650.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(800,1000,1200) ZEUS(800,1000,1200) Q
2
=1000.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
ZEUS(1500,2000) H1(1500,1600,2000) Q
2
=1800.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
ZEUS(2000) H1(2000)
Q
2
=2000.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(3000,5000)
ZEUS(3000,5000) Q
2
=4000.
10
­3
10
­2
10
­1
1
10
­5
10
­4
10
­3
10
­2
10
­1
H1(8000,12000)
Q
2
=10000.
x
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
23

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
10
­2
10
­1
10
­3
10
­2
10
­1
E665(.23) EMC89(.25)
Q
2
=0.25
F
2
(x)
10
­2
10
­1
10
­3
10
­2
10
­1
E665(.31) EMC89(.35)
Q
2
=0.35
10
­2
10
­1
10
­3
10
­2
10
­1
E665(.43) E665(.58) EMC89(.5)
Q
2
=0.5
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(.75) E665(.8) SLAC(.8) EMC89(.7) EMC89(.9)
Q
2
=0.8
10
­2
10
­1
10
­3
10
­2
10
­1
E665(1.09) SLAC(1) EMC89(1.1)
Q
2
=1.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(1.25) E665(1.5) SLAC(1.4) EMC89(1.4)
Q
2
=1.4
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(1.75) E665(2.05) SLAC(2) EMC89(2)
Q
2
=2.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(2.5) E665(2.8) SLAC(2.7) EMC89(2.8)
Q
2
=2.7
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(3.5) E665(3.83) SLAC(3.5) EMC89(3.6)
Q
2
=3.5
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(4.5) NMC(5.5) E665(5.24) SLAC(5) EMC89(4.4,5.6)
Q
2
=5.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(7) E665(7.16) SLAC(7) EMC87(7) EMC89(7.2)
Q
2
=7.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(9) E665(9.8) SLAC(9) EMC87(9) BCDMS(8.75) BCDMS(10.25) Q
2
=9.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(11.5) E665(13.4) SLAC(12.) EMC87(11) BCDMS(11.75) BCDMS(13.25) Q
2
=12.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(15) SLAC(16) EMC87(15) BCDMS(15) BCDMS(17) Q
2
=16.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(20) E665(18.32) SLAC(20) EMC87(20) BCDMS(21.5) BCDMS(19) Q
2
=20.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(27) E665(25.06) SLAC(27) EMC87(27) BCDMS(24.5) BCDMS(28) Q
2
=27.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(36) E665(34.28) EMC87(36) BCDMS(32.5) BCDMS(37.5) Q
2
=35.
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(48) E665(46.88) EMC87(48) BCDMS(43) BCDMS(49.5) BCDMS(57) Q
2
=50.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
NMC(65) E665(64.27) EMC87(65) BCDMS(65.5) Q
2
=65.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
BCDMS(75) Q
2
=75.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
EMC87(90) BCDMS(86) BCDMS(99) Q
2
=90.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
EMC87(125) BCDMS(115.5) BCDMS(137.5) Q
2
=125.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
EMC87(170) BCDMS(175) Q
2
=175.
10
­3
10
­2
10
­1
10
­3
10
­2
10
­1
BCDMS(230) Q
2
=230.
x
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
24

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0.2
0.3
10
­1
1
10
10
2
10
3
10
4
22/90
25/90
Q
2
,
GeV
2
Àe
2
ß
S
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
25

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
5
6
7
1
10
10
2
10
3
10
4
Q
2
,
GeV
2
N
partons
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
26

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
10
­1
1
10
10
2
10
3
10
4
Q
2
,
GeV
2
1­a
Pomeron
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
27

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0.4
0.5
1
10
10
2
10
3
10
4
Q
2
,
GeV
2
D
direct
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
28

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
10
­2
10
­1
NMC95(1.375,1.5,1.625) Q
2
=1.5
GeV
2
(F
2d
(x)­F
2p
(x))/F
2p
(x)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
10
­2
10
­1
EMC94(4) NMC91(4) Only
stat.
errors
Q
2
=4
GeV
2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
10
­2
10
­1
EMC87(20) E665(18.6) BCDMS(19) NMC90(20.3) NMC95(20)
Q
2
=20
GeV
2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
10
­2
10
­1
EMC87(65) NMC95(65) BCDMS(60)
Q
2
=65
GeV
2
x
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
29

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=2.2
GeV
2
F
L
(x)
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=4.2
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=7.5
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=12
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=15
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=20
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=25
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=35
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=110
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=175
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=280
GeV
2
0
0.25
0.5
10
­4
10
­3
10
­2
10
­1
Q
2
=450
GeV
2
x
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
30

Chiral
Invariant
Phase
Space
(CHIPS)
model.
CERN
Conclusion
.
CHIPS
is
a
universal
3D/SU(3)
event
generator;
.
The
gluon­gluon
fusion
can
be
used
for
heavy
quark
production;
.
Strings
can
fragment
in
Quasmons
(Amati­Veneziano,
HERWIG);
.
Ion­ion
collisions:
mutual
excitation
of
Quasmons
in
nuclei.
June
25,
2002
Mikhail
Kosov,
ITEP/CERN
(ACAT
2002)
31