Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://geo.web.ru/~ariskin/docs/papers/a_2009_kachkanar_bychkov.pdf
Äàòà èçìåíåíèÿ: Wed Oct 6 10:41:06 2010
Äàòà èíäåêñèðîâàíèÿ: Fri Feb 11 13:00:01 2011
Êîäèðîâêà:
The third international conference «Mafic-ultramafic complexes of fold ed regions and related d eposits»

, , , . -- , , .

: - ..*,**, ..*, ..** * , , e-mail: kb@na.ru, ariskin@rambler.ru ** , , e-mail: l.dan@utas.edu.au MODELS OF SULFUR SOLUBILITY IN BASALTIC MAGMAS: APPLICATION TO PROBLEMS OF THE FORMATION OF SULFIDE MINERALIZATION OF THE IOKO-DOVYREN LAYERED MASSIF Bychkov K.A.*,**, Ariskin A.A.*, Danyushevsky L.V.** *Institute of Geochemistry and Analytical Chemistry RAS, Moscow, Russia e-mail: kb@na.ru, ariskin@rambler.ru **University of Tasmania (CODES), Hobart, Australia e-mail: l.dan@utas.edu.au Details of calibra tion and applications of four models, describing sulfur solubility in ba saltic magmas, have been considered [1, 3 ,4, 9]. The latter model was found to demonstrate most accurate calculations of sulfur contents at sulfide saturation both for experimental and natural melts. Contr ary to other developments it is able to reproduce positive correlation S vs FeO observed in MORB glasses with falling temperature. Application of this model to derivatives of a parental Dovyren magma allows one to forecast existence of two solubility minima at its liquid line of descent: the first one corr esponds to onset of Ol-Pl crystallization at T~1190° , whereas the second minimum is expected to appear at T<1125° in the field of reaction replacement of olivine with orthopyroxene and pigeonite. 20 [1-10]. : (1) , [3, 7, 8, 10], (2) , («sulfur capacity») [11], fS2 , [9], (3) , , ( S2-), ±fO2 [1, 3-6]. («sulfur contents at sulfide saturation», SCSS) , . [7, 8, 10], , ( fS2), . « », , 96


«- »

fS2/fO2 [9], , . [12-14]. SCSS [3, 4, 9] [1, 15], . - [16].

-4

100 80 60 40

ln XS ()

-5

20 0 -0.6 -0.3 0 0.3 0.6

-6

-7


-8 -8 -7 -6 -5 -4

. 1. SCSS [3, 4, 9] - [1] 167 1200-1500° 47 ~170 , . , (~1200-1500°) 1 ( QFM) [15]. XS ­ ( ), . , [3, 4, 9] , ( <10 .% ln(XS)), ­ ±20-30 .% [15]. 47 MORB (- ), (Danyushevsky, ). ~12001100°C ( Ol- [17]), - , [3, 4, 9]. [3, 4] SCSS T~1190-1205°C, S FeO , [15]. [9] S FeO, ( ) SCSS. SCSS , [1]: I. : (FeS) m + (n-1)Fe2+m = (FenS)2(n-1)+m , n=2,3,4... (1) «» : (FezS)2(z-1)+m = FeS + (z-1)Fe2+ , (2) z ­ , FeO.
97

ln XS ()


The third international conference «Mafic-ultramafic complexes of fold ed regions and related d eposits»

II. 1275 1250 OL (82 ) 47 1225 (. 1200 ), «OL + PL + CPX OL + PL » 1175 . -OL + PL - OL + PL + CPX 1150 + CPX + OPX + PIG - OPX , 1125 0.1 0.12 0.14 0.16 0.18 0.2 5 7.5 10 12.5 10 .% ln(XS) SCSS, wt.% FeO wt.% . 2. FO 1400-1150°C - (. 1). . MORB S FeO [15].
1300

, SCSS . - [16, 18] SCSS (. 2). 1% 0.5 WM. 1290-1190° ­ 0.18 0.14 .% S. : , SCSS ­ , FeO . . , Ol-Pl 1180-1190° 8 .% MgO [19]. FeO (. 2) , S ( SCSS T < 1125° ). Pl- , , .
( 08-05-00194) AMIRA International (P962). 1. Ariskin A.A., Bychkov K.A., Danyushevsky L.V., Barmina G.S. A model of S solubility in basaltic melts at 1 atm // Geochim. Cosmochim. Acta. 2008. V. 72 (Suppl. 1: Abs. 18th Annual Goldschmidt conf., Vancouver, Canada, 2008). A31. 2. Boudreau A.E., Simon A. Crystallization and degassing in the basement Sill, McMurdo DryValleys, Antarctica // J. Petrol. 2007. V. 48. P. 1369-1386. 3. Holzheid A., Grove T.L. Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets // Amer. Miner. 2002. V. 87. P. 227-237. 4. Li C., Ripley E.M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits // Mineralium Deposita. 2005. V. 40. P. 218-230. 98

T, C


«- »

5. Liu Y., Samaha N.-T., Baker D.R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts // Geochim. Cosmochim. Acta. 2007. V. 71. P. 1783-1799. 6. Mavrogenes J.A. O'Neill H.St.C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas // Geochimica et Cosmochimica Acta. 1999. V. 63. P. 1173-1180. 7. Moretti R., Ottonello G. Solubility and speciation of sulfur in silicate melts: the conjugated Toop-SamisFlood-Grjotheim (CTSFG) model // Geochim. Cosmochim. Acta. 2005. V. 69. P. 801-823. 8. Moretti R., Baker D.R. Modeling the interplay of fO2 and fS2 along the FeS-silicate melt equilibrium // Chemical Geology. 2008. V. 256. P. 286-298. 9. O'Neill H.St.C., Mavrogenes J.A. The sulfide capacity and the S content at sulfide saturation of silicate melts at 1400°C and 1 bar // J. Petrol. 2002. V. 43. P. 1049-1087. 10. Wallace P., Carmichael I.S.E. Sulfur in basaltic magmas. 1992. 56(5). P. 1863-1874. 11. Fincham C.J.B., Richardson F.D. The behaviour of sulphur in silicate and aluminate melts // Proc. R. Soc. Lond. 1954. A223. P. 40-62. 12. Nilsson R., Seetharaman S., Jakob K.T. A modified sulphide capacity function // ISIJ International 34, 1994. No. 1. P. 876-882. 13. Nzotta M.M., Andreasson M., Sichen Du, Seetharaman S. A study on sulphide capacities of steelmaking slags // Scand. J. Metall. 1999. V. 29 (4). P. 177-184. 14. Shankar A., Garnerup M., Lahiri A.K., Seetharaman S. Sulfide Capacity of High Alumina Blast Furnace Slags // Metall. Mater. Trans. 2006. 37B, 941-947. 15. Bychkov K.A., Ariskin A.A., Barmina G.S., Danyushevsky L.V. () A test of sulfide solubility models using anhydrous experimental melts and natural tholeiitic glasses // Geochim. Cosmochim. Acta. 2008. V. 72 . (Suppl. 1: Abs. 18th Annual Goldschmidt conf., Vancouver, Canada, 2008). A126. 16. .., .., .., .., .., .., .., .. : - // . 2009. [ ]. 17. Ford C.E., Russell D.G., Craven J.A., Fisk M.R. Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe , Ca and Mn // J. Petrol. 1983. V. 24. P. 256-265. 18. .., .., .., .., .. . 2009. (. ). 19. .., .., .. ( , ) // . 2003. 2. . 131-155.

.. , , e-mail: yanab66@yandex.ru PECULIARITY OF NON COHERENT ELEMENTS DISTRIBUTION IN SULPHIDE HORIZONS OF LAYERED INTRUSIONS Bychkova Ya.V. Institute of Geochemistry and Analytical Chemistry RAS, Moscow, Russia e-mail: yanab66@yandex.ru Sulphide horizons of Kivakka layered intrusion were researched. Fractionation of non coherent element was established. In low and upper horizons correlation between S and Ni is different. In the low horizons Ni correlates with pyroxene concentration as rare element in this mineral. In the upper horizons it correlates with S, as a component of sulphide minerals. REE are concentrated in the most
99