Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://tunka.sinp.msu.ru/en/presentation/Dedenko.pdf
Äàòà èçìåíåíèÿ: Sun May 22 11:46:33 2011
Äàòà èíäåêñèðîâàíèÿ: Mon Feb 4 18:35:21 2013
Êîäèðîâêà:
Fluctuation in EAS development and estimates of energy and composition of the primary radiation by L. Dedenko, SINP, MSU


1) surface scintillation detectors (SD) 2) detectors of the Vavilov-Cherenkov radiation (VCR) 3) underground detectors of muons (UD) (with the threshold energy ~1 GeV).

Yakutsk array


Detectors readings

· The various particles · of Extensive Air Showers (EAS) · at the observation level · hit detectors · and induce some signals sampled as

· detector readings
18.05.2011. IWS. SINP. MOSCOW

in (SD), (VCR)


Detectors readings

· Some particles (muons, gammas) · penetrate through some depth h of soil, hit underground detectors · and induce some signals sampled as

·

detector readings
18.05.2011. IWS. SINP. MOSCOW

· in underground detectors of muons (UD) (with the threshold energy ~1 GeV).


Standard approach of energy estimation

· Signal s(600) in SD · at 600 m from the EAS core · in the vertical EAS · is used to estimate · energy E of EAS.
18.05.2011. IWS. SINP. MOSCOW


Standard approach of energy estimation

· DATA:

· 1. The CIC method is used to estimate s(600) in vertical EAS from data for the inclined EAS. · 2. The signal s(600) for the vertical EAS is calibrated with the help of the · Vavilov-Cherenkov radiation · 3. E=4.6·1017· s(600), eV
18.05.2011. IWS. SINP. MOSCOW


Standard AGASA approach:

Like AGASA:

· 1. The CIC method to estimate s(600) for the vertical EAS from data for the inclined EAS. · 2. Calculation s(600) for the vertical EAS with energy E: · 3. E=3·1017·s(600), eV · 1. L.G. Dedenko et al., Phys. of Atom. Nucl., 2007, vol. 70, No 1, pp. 170-174.
18.05.2011. IWS. SINP. MOSCOW


Spectrum ·Energy spectra are different for these approaches
18.05.2011. IWS. SINP. MOSCOW


points Yakutsk data, stars PAO circles Yakutsk like AGASA

18.05.2011. IWS. SINP. MOSCOW


The CIC method
· The constant intensity cut (CIC) method: · may be systematic error! · For Yakutsk array the absorption length ·

458

2 g/cm

· (to be compared with the simulated average value) ·

340 g/cm
18.05.2011. IWS. SINP. MOSCOW

2


New approach
· · · · · · · · All detectors readings are suggested to be used to study the energy spectrum and the chemical composition of the primary cosmic radiation at ultra-high energies in terms of some model of hadron interactions.
18.05.2011. IWS. SINP. MOSCOW


The new approach
· For the each one individual EAS · 1) the energy E and · 2) the type of the primary particle, (atomic number A), which induced EAS, · 3) parameters of model of hadron interactions, · 4) peculiar development of EAS in the atmosphere · are not known
18.05.2011. IWS. SINP. MOSCOW


· · · ·

· ·

The new approach The goal is to find estimates of 1) energy E, 2) atomic number A, 3) parameters of model of hadron interactions, 4) peculiar development of EAS in the atmosphere for each individual shower
18.05.2011. IWS. SINP. MOSCOW


The new approach
It has been suggested for the every one observed EAS to use all detector readings which should be compared with the simulated ones · for many simulated individual showers, · induced by 1) various primary particles · with 2) different energies · in terms of 3) various models.
18.05.2011. IWS. SINP. MOSCOW


· · · · · ·

The new approach The best estimates of the energy E, the atomic number A and parameters of model and peculiar development of EAS in the atmosphere are searched by the 2 method.
18.05.2011. IWS. SINP. MOSCOW


The new approach
· · · · · The best estimates of the 1) arrival direction and 2) core location are also searched by the 2 method.

18.05.2011. IWS. SINP. MOSCOW


Simulations
· Simulations of the individual shower development in the atmosphere · have been carried out with the help of · the code CORSIKA-6.616 [8] · in terms of the models QGSJET2 [9] and Gheisha 2002 [10] · with the weight parameter =10-8 (thinning).
18.05.2011. IWS. SINP. MOSCOW


Simulations
· The program GEANT4 has been used · to estimate signals in the scintillation detectors · from electrons, positrons, gammas and muons · in each individual shower.

18.05.2011. IWS. SINP. MOSCOW


Detector model

18.05.2011. IWS. SINP. MOSCOW


Signals in scintillation detector

· Signals E in MeV in detectors as functions of · 1) energy E · and · 2) the zenith angle (cos()) · of various incoming particles:
18.05.2011. IWS. SINP. MOSCOW


Electrons

18.05.2011. IWS. SINP. MOSCOW


Positrons

18.05.2011. IWS. SINP. MOSCOW


Gammas

18.05.2011. IWS. SINP. MOSCOW


Muons

18.05.2011. IWS. SINP. MOSCOW


· · · ·

Minimum of the function 2 Readings of all scintillation detectors have been used to search for the minimum of the function 2 in the square with the width of 400 m and a center determined by data with a step of 1 m.
18.05.2011. IWS. SINP. MOSCOW


Minimum of the function 2
These readings have been compared with calculated responses for E0=1020 eV (201*201 signals) multiplied by the coefficient C. · · This coefficient C changed from 0.1 up to 4.5 with a step of 0.1. · (45 values) · L.G. Dedenko et al., JETP Letters, 2009, vol.90, No 11, pp. 691-696.
18.05.2011. IWS. SINP. MOSCOW


Minimum of the function 2

· Thus, it was assumed, that the energy of a shower and signals in the scintillation detectors are proportional to each other in some small interval. · New estimates of energy · E =C·E0 , eV
18.05.2011. IWS. SINP. MOSCOW


Results of energy estimations

·

16*45=720

· of energy estimates for simulated showers induced by · protons, He, O and Fe nuclei · have been obtained · for the same sample of the 31 experimental readings of the · one observed giant shower.
18.05.2011. IWS. SINP. MOSCOW


Best estimates:
10**20 eV Nuclei s(600,) C=E/10**20 eV P 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 27.48 29.64 32.18 27.77 25.11 33.56 27.88 31.33 30.73 31.03 29.90 31.66 34.12 36.23 33.05 35.02 53.88 2.04 2.00 1.805 2.27 2.37 1.755 2.085 1.93 1.78 1.86 1.94 1.75 1.6 1.66 1.745 1.69 1.1 x, m 941 965 948 1011 y, m -374 -406 -425 -421 min
2 1

0.88 0.945 1.019 1.03 0.895 0.996 0.949 1. 0.97 0.942 0.904 0.997 1.081 1.042 1.051 1.01

He

956 -408 947 -421 942 -389 955 -439 909 943 940 912 905 969 935 975 1055 -363 -387 -393 -428 -353 -429 -437 -389 -406

O

Fe

DATA Yakutsk

18.05.2011. IWS. SINP. MOSCOW


Simulations
· · · · New estimates of energy E of the giant air shower observed at YA have been calculated in terms of the QGSJET2 and Gheisha 2002 models: · E2.·1020 eV for the proton primaries · and · E1.7·1020 eV for the primary iron nuclei

18.05.2011. IWS. SINP. MOSCOW


Minimum of the function 2

· · · · ·

Coordinates of axis and values of the 2 have been obtained for each individual shower
18.05.2011. IWS. SINP. MOSCOW


Results of energy estimations
· The energy estimates are minimal for the iron nuclei primaries · and change inside the interval · (1.6-1.75)· 1020 eV · with the value of the 2 ~ 1.1 · per one degree of freedom.

18.05.2011. IWS. SINP. MOSCOW


· · · · · ·

Results of energy estimations For the proton and helium nuclei primaries energy estimates are maximal and change inside the interval (1.8-2.4)·1020 eV with the value of the 2 ~ 0.9 per one degree of freedom.
18.05.2011. IWS. SINP. MOSCOW


Results of energy estimations
· For the oxygen nuclei primaries the · energy estimates are in the interval · (1.8-2)·1020 eV · which is between intervals for proton and iron nuclei primaries · with the value of the 2 ~ 0.95 · per one degree of freedom.

18.05.2011. IWS. SINP. MOSCOW


Dependence of the 1 · per one degree of freedom · on the coefficient 20 eV) · C=E/(10
·

Results of energy estimations

2

18.05.2011. IWS. SINP. MOSCOW


protons

18.05.2011. IWS. SINP. MOSCOW


helium nuclei

18.05.2011. IWS. SINP. MOSCOW


oxygen nuclei

18.05.2011. IWS. SINP. MOSCOW


iron nuclei

18.05.2011. IWS. SINP. MOSCOW


Reality of the Yakutsk DATA

· The time of sampling signal in the scintillation detectors · =2000 ns

18.05.2011. IWS. SINP. MOSCOW


Fraction of sampled signal: 1-100 m, 2-600 m, 3-1000 m, 4-1500 m

18.05.2011. IWS. SINP. MOSCOW


Energy spectrum

· The HiRes data are used to construct
· 1) the base spectrum

·

Jb(E)= A·(E)
Jr(E)

-3.25

,

· and · 2) the reference spectrum ·

18.05.2011. IWS. SINP. MOSCOW


Energy spectrum · Using new variable y=lgE · in four energy intervals of yi · (i=1, 2, 3 and 4) · 1) 17.20.01
18.05.2011. IWS. SINP. MOSCOW


Spectrum Jr(E) has been approximated by the following exponent functions

· · · ·

J1(E)=A·(E)J2(E)=C·(E) J3(E)=D·(E)

3.25,

-2.81, -5.1

,
3.25

J4(E)=J1(E)=A·(E)-

· Constants C and D may be expressed through A and equations for Jr(E) at the boundary 18.05.2011. IWS. SINP. points. MOSCOW


Spectrum Jb(E) has been approximated by the following exponent function

·

·

Jb(E) = J1

-3.25, (E)=A·(E)

· L.G. Dedenko et al., Phys. of Atom. Nucl., 2010, vol. 73, No12, pp. 2182-2189.

18.05.2011. IWS. SINP. MOSCOW


Spectrum

· The reference spectrum · is assumed as
· ·

lgzi=lg(Ji(E)/J1(E)),

· where i=1, 2, 3, 4.
18.05.2011. IWS. SINP. MOSCOW


Spectrum · Results of the spectra J(E) · observed at various arrays · have been expressed as
·

lg z=lg (J(E)/Jb(E))

· and are shown · in comparison with · the reference spectrum.
18.05.2011. IWS. SINP. MOSCOW


HiRes

18.05.2011. IWS. SINP. MOSCOW


PAO

18.05.2011. IWS. SINP. MOSCOW


AGASA

18.05.2011. IWS. SINP. MOSCOW


Yakutsk

18.05.2011. IWS. SINP. MOSCOW


TA

18.05.2011. IWS. SINP. MOSCOW


Tibet, Tunka-25, Cascade-Grande

18.05.2011. IWS. SINP. MOSCOW


Study of the chemical composition
· Muon density for the primary protons with the energy E:

·

·

(600)=a·Eb b<1

· Decay processes are decreasing for higher energies E.

18.05.2011. IWS. SINP. MOSCOW


Study of the chemical composition
· Muon density for the primary nuclei with atomic number A

· ·

(600)=a·Ac·Eb c>0 (c=1-b)

· QGSJET2: b=0.895, c=0.105 · For Fe: · A0.105=1.53
18.05.2011. IWS. SINP. MOSCOW


Study of the chemical composition
· QGSJET2:

· · · · · ·

Signal in SD s(600)=E·(E/3·1017 eV) Signal in UD k·E·(600) Coefficient k=1.3 Average signal E=10.5 MeV
18.05.2011. IWS. SINP. MOSCOW


Study of the chemical composition · Muon fraction at 600 m:
·

=k·E·(600)/s(600)

· Coefficient k=1.3 takes into account the difference in the threshold energies and signals in UD

18.05.2011. IWS. SINP. MOSCOW


Signal in underground muon detectors for deph h = 2.5 m: ­ 0, stars­ 45, solid ­ 10.5 eV,dashed ­ 14.85 eV.

18.05.2011. IWS. SINP. MOSCOW


Signal in underground muon detectors for deph h = 2.5 m: ­ 0, stars­ 45,solid ­ 10.5 eV,dashed ­ 14.85 eV.

18.05.2011. IWS. SINP. MOSCOW


Signal distributions in underground muon detectors for deph h = 3.2 m a ­ = 1.05 GeV, b ­ = 1.5 GeV, c ­ = 10 GeV.

18.05.2011. IWS. SINP. MOSCOW


Mean signal in underground muon detectors from gammas with various energies for deph h : ­ h = 2.3 , ­ h = 3.2 .

18.05.2011. IWS. SINP. MOSCOW


Signal distributions in underground muon detectors from gammas for deph h =2.3 m: a ­ = 5 GeV, b ­ = 10 GeV.

18.05.2011. IWS. SINP. MOSCOW


Composition: solid-p, dashed-Fe, points-data

18.05.2011. IWS. SINP. MOSCOW



18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


Conclusion

· Fluctuations in EAS development should be taken into account to get estimates of · energy E and · composition (atomic number A) of the primary particles.
18.05.2011. IWS. SINP. MOSCOW


·Thank you for attention

18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW


18.05.2011. IWS. SINP. MOSCOW