Документ взят из кэша поисковой машины. Адрес оригинального документа : http://num-meth.srcc.msu.ru/english/zhurnal/tom_2010/v11r124.html
Дата изменения: Tue Jun 22 16:57:57 2010
Дата индексирования: Mon Oct 1 22:49:15 2012
Кодировка:
"Derivation of explicit difference schemes for ordinary differential equations with the aid of Lagrange-Burmann expansions"  
"Derivation of explicit difference schemes for ordinary differential equations with the aid of Lagrange-Burmann expansions"
Vorozhtsov E.V.

Some explicit multistage Runge-Kutta type methods for solving ordinary differential equations (ODEs) are derived with the aid of the expansion of grid functions in the Lagrange-Burmann series. The formulas are given for the first four coefficients of the Lagrange-Burmann expansion. New explicit first- and second-order methods are derived and applied to the numerical integration of the Cauchy problem for a moderately stiff ODE system. It turns out that the L2-norm of the error in the solution obtained by the new numerical second-order method is 50 times smaller than that of the classical second-order Runge-Kutta method.

Keywords: ordinary differential equations, Lagrange-Burmann expansion, Runge-Kutta methods, stiff systems

Vorozhtsov E.V. e-mail: vorozh@itam.nsc.ru