Документ взят из кэша поисковой машины. Адрес оригинального документа : http://num-meth.srcc.msu.ru/english/zhurnal/tom_2012/v13r110.html
Дата изменения: Tue Jan 24 15:42:56 2012
Дата индексирования: Mon Oct 1 22:57:53 2012
Кодировка: ISO8859-5
яЛП "Knot insertion and knot removal matrices for nonpolynomial splines"  
"Knot insertion and knot removal matrices for nonpolynomial splines"
Makarov A.A.

Continuously differentiable splines of second order on a nonuniform grid are constructed. Formulas of polynomial and nonpolynomial (trigonometric and hyperbolic) are given. Calibration relations expressing the coordinate splines on the original grid as a linear combination of splines of the same type on a refined grid and calibration relations representing the coordinate splines on an enlarged grid as a linear combination of splines of the same type on the original grid are obtained. Knot insertion and knot removal matrices on an interval and on a segment for splines associated with infinite and finite nonuniform grids respectively are constructed.

Keywords: spline, wavelet, biorthogonal systems, decomposition matrix, reconstruction matrix, subdivision scheme, knot insertion and removal algorithms, spline curve

Makarov A.A.   e-mail: Antony.Makarov@gmail.com