Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://danp.sinp.msu.ru/MagNanoS/L13.pdf
Äàòà èçìåíåíèÿ: Thu Nov 24 21:47:58 2005
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 20:45:16 2012
Êîäèðîâêà:
XIII.
. . II­VI III­ V . d-. d-. Mn. . . . . . . ( -). . . . - (spin FET).

. , , , . , , XI. , (GMR), - , , -. ­ , GMR (. XI [1]). - ­ MRAM. - ­ , . - GMR . MRAM (DRAM) (. XIV [2]). - , Fe, Co Ni 40% [3]. , -. . , . , , , . (qubit-quantum bit) ­ () , . , , . . , , Fe, Co Ni -. - «» «». , - . , ,


, . , , - , - , , . 80- (), 35 [4]. [5]. . 35 26, . , . Cr- , Eu- and Mn- , . , < 100 . 3d- 4f ­ . : Cd1­xCoxSe, Ga1­xMnxAs, Pb1­xEuxTe, Si:Er. 1970- [6-8], Mn 26(Mn) . 1990- , - (), . , . A2B6 , , , , , Ga1­xMnxAs x 0.07 1020 ­3. 26, Mn [9,10], T 100 [11] , [12] [13,14] - (A2, Mn)B6 , . II­VI III­V . d-. [15]. : (1) , s p (2) , d- . .12.1 [D(0/+), ] [(0/-), ] (2)- , , II­VI III­V. [17,18]. . 12.1


. , , (, Sc CdSe), , . 13.1. d- (, Mn GaAs). , ( ) , ( ) () II­VI (b) III­V [16]. ( III . 3.3). d-. - sp d- . H = - JsS [7,8,19,20], J ­ (s) (S). , s- s-d Jsd 0.2 ( Sc CdS, ). , . p- d- . , .. , |Jpd| 1 [7,8,19, 20]. sp-d , . Mn. . , . Mn IIVI. , d- Mn sp3- , , . 13.1, , d5 () d6 () , , . .. Mn , (S =5/2 . 13.2. () 3d5- Mn2+ , . . 3.3). () , III-V-, () [16Dietl]. Mn ,


3d4 Mn3+, . 3.3, , . , , Mn d5+h. ( ) . . 13.2. () () () . (.%) Mn. Ga1­ xMnxAs ( ) [11], Zn1­xMnxTe:N ( )[14-10], p-Cd1­ xMnxTe ()[13,21], Zn1­ xMnxTe:N:P ( ) [22]. ­ [23] 3D 2D. ­ RKKY (Ruderman­Kittel­Kasuya­Yosida) [14]. , , . . 80% Mn (Ga, Mn)As [23] 100% TC (Cd, Mn)Te, [13,24]. , M/Msat . 13.3. (a) 5 K , (b) 25 K ( ) , ( ) M/Msat ~(TC ­ T)1/2 T (Ga,Mn)As/GaAs(001) TC 1 - M/Msat ~ T 5/2 T << [25, 26]. TC. , . . 13.3 (a) 5 K (b) 25 K ( ) ( ) (Ga, Mn)As/GaAs(001) . . , , . 13.4. (MCD-magnetic circular
Zn1­xCrxTe (x=0.20) [27.71Kar].


dichroism) , . 13.4 Zn1­xCrxTe (x=0.20). MCD (1 ) ( = 2.2 ). , [27]. . ­ , , , . , , N(EF), . = 100%. CrO2, . . , Fe3O4 , , , Zn, (Zn: ). () . d- , 3d , 3d . , 4s , , EF. , , 4s EF. , . , 4s- 2p- . 3d . 13.5. . . , . , ­ , , . , . : CrO2, Fe3O4, La0.7Sr0.3MnO3 Sr2FeMoO6.


. . 13.5 ( ) ( ) . EF ­ , Eµ ­ , - , sf

.13.6. . ­ , I ­ . Sc , h ­ .

. : (a) IA (, CrO2) (b) IB (, , Sr2FeMoO6) 3d , , , . (c) II I, . , , , . (, Fe3O4). IIB I II . (n+ n) . .13.7. -. () , , . (b) , (n- n) dN/dE, . , n n . () - , , . . =0. (d) III . IIIA (, La0.7Sr0.3MnO3). (a)


t2g eg . 3d-. . . 13.6 P = {N(EF) - N(EF)}/ {N(EF) + N(EF)}, (13.1) N,(EF) ­ . - , - . , . (13.2) P = {N(EF)w -N(EF)w}/{N(EF)w +N(EF)w}, . - , (, ). , 5-10 , . . , , Al2O3 SrTiO3. . MR = (Rp ­Rap)/Rap, (13.4) Rp Rap ­ . , . , (JulliÕre): (13.5) MR = 2P2/ (1+ P2) MR [28]. MR ­ , . . . , . , . ( -). [29]. , . .


. . 13.7. . , (13.6) = [(4 -2 ) - (1 -3 )] / [4 -2 ) + (1 -3 )], ­ . . , . ­ . 13.8. () (V)/n . , 2, . (b) Pb/CrO2 P = 98.4%. (),(d) ­ . . . , =0 , =1 [30]. , , .12.8. (0) n, (0)/ n = 2(1-P). (13.7) , , , . . , . , , . ­ , . . 13.9. . 13.10 . , , . ­ ~ 200 1100 [31-33]. , (NiMnSb, PtMnSb) (Co2MnSi, Co2MnGe, Co2MnSn, Fe2MnSi) 100% ,


. [34,35,36-39].

. 13.9. .

.13.10. .

13.1. Ga1­xAlxAs or InAs. Ni2MnA Ni2MnGa Ni2MnG Ni2MnIn1 Ni2MnIn Co2NiG Co2MnGa l e .7 a TC (K) 350 340 320 290 170 670 690

() 2010 [40]. , , . ­ - (spin FET) [41]. ­ , , . FET , . , , , , . , -


(spin-RTDs) [42-47], - [48,49], - (spinLEDs) [50], [51], . , . [52,53] >100 [54,55], , GaAs. [45,48,49] [43,50,52,56-58] , . . - (spin-LED) .13.11 [50]. - , , AlGaAs/GaAs(001). .13.11. () - . EL ­ , QW ­ , (b) , - . 400, 300 200 . . , , , Pcirc, - , Pspin [59,60]. QW-GaAs, Pspin = Pcirc, GaAs, Pspin = 2Pcirc. .. , . - (): , -.

1. M. Ziese and M.F. Thornton, eds., Spin Electronics (Springer, Berlin, 2001). 2. G.A. Prinz, Science 282 (1998) p. 1660. 3. D.J. Monsma and S.S.P. Parkin, Appl. Phys Lett. 77 (2000) p. 720 4. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L.L. Chang, and L. Esaki, Phys. Rev. Lett. 63 (1989) p. 18491. 5. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature 402 (1999) p. 787 6. R.R. Gala¸ zka, in Proc. 14th Int. Conf. onPhysics of Semiconductors, Inst. Phys. Conf. Ser. 43, edited by B.L.H. Wilson (Institute of Physics, Bristol, 1978) p. 133 7. T. Dietl, in Physics in High Magnetic Fields, Springer Series in Solid-State Physics, Vol. 24, edited by S. Chikazumi and N. Miura (Springer, Berlin, 1981) p 344


8. J.K. Furdyna and J. Kossut, eds., Diluted MagneticSemiconductors, Semiconductors and Semimetals, Vol. 25, R.K. Willardson and A.C. Beer, series editors (Academic Press, New York, 1988). 9. H. Ohno, H. Munekata, T. Penney, S. von MolnÀr, and L.L. Chang, Phys. Rev. Lett. 68 (1992) p. 2664. 10. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A.Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69 (1996) p. 363 11. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57 (1998) p. R2037 12. T. Dietl, A. Haury, and Y. Merle d'AubignÈ, Phys. Rev. B 55 (1997) p. R3347 13. A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, and Y. Merle d'AubignÈ, Phys. Rev. Lett. 79 (1997) p. 511. 14. D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyn´ski, S. Kole´snik, T. Dietl, B. Barbara, and D. Dufeu, Phys. Rev. B 63 (2001) 085201 15. S.V. Vonsovskii, Magnetism (John Wiley &Sons, New York, 1974). 16. T. Dietl and H. Ohno, MRS Rulletin, v.28 (2003) no.10, p. 714 17. A. Zunger, in Solid State Physics, Vol. 39, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1986) p. 275. 18. J.M. Langer, C. Delerue, M. Lannoo, and H. Heinrich, Phys. Rev. B 38 (1988) p. 7723. 19. T. Dietl, in Materials, Properties and Preparations, edited by S. Mahajan, Handbook on Semiconductors, 2nd ed., Vol. 3B, edited by T.C. Moss (North-Holland, Amsterdam, 1994) p. 1251. 20. P. Kacman, Semicond. Sci. Technol. 16 (2001) p. R25. 21. J. Cibert, D. Ferrand, H. Boukari, S. Tatarenko, A. Wasiela, P. Kossacki, and T. Dietl, Physica E 13 (2002) p. 489. 22. T. Andrearczyk, et al, in Proc. 25th Int. Conf on Physics of Semiconductors, edited by N. Miura and T. Ando (Springer, Berlin, 2001) p. 235. 23. T. Dietl, H. Ohno, and F. Matsukura, Phys.Rev. B 63 195205 (2001). 24. H. Boukari, P. Kossacki, M. Bertolini, D. Ferrand, J. Cibert, S. Tatarenko, A. Wasiela, J.A. Gaj, and T. Dietl, Phys. Rev. Lett. 88 207204 (2002). 25. T. Dietl and H. Ohno, Mrs Bulletin, 28 (2003) 714 26. T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 77 (2000) p. 1363. 27. G. Karczewski, et al, J. Supercond./Novel Magn. 16 (2003) p. 55. 28. J.M. de Teresa, A. BarthÈlÈmy, A. Fert, J.P. Contuor, F. Montaigne, and P. Seneor, Science 286 (1999) p. 507. 29. R. Meservey and P.M. Tedrow, Phys. Rep. 238 (1994) p. 173. 30. R.J. Soulen Jr., et al, Science 282 (1998) p. 88. 31. P.J. Webster, J. Phys. Chem. Solids 32 (1971) p. 1221. 32. K.H.J. Buschow, P.G. van Engen, and R. Jongebreur, J. Magn. Magn. Mater. 38 (1983) p. 1. 33. P J. Brown, K.U. Neumann, P.J. Webster, and K.R.A. Ziebeck, J. Phys.: Condens. Matter 12 (2000) p. 1827. 34. S. Fujii, S. Ishida, and S. Asano, J. Phys. Soc.Jpn. 64 (1995) p. 185. 35. K.E.H.M. Hanssen, P.E. Mijnarends, L.P.L.M. Rabou, and K.H.J. Buschow, Phys. Rev. B 42 (1990) p. 1533 36. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B 245 (1998) p. 1. 37. S. Ishida, S. Fujii, H. Nagayoshi, and S. Asano, Physica B 254 (1998) p. 157.


38. I. Galanakis, J. Phys.: Condens. Matter 14 (2002) p. 6329. 39. G.A. de Wijs and R.A. de Groot, Phys. Rev. B 64 020402 (2001) 40. H.S.P. Wong, D.J. Frank, P.M. Solomon, C.H.J. Wann, and J.J. Welser, Proc. IEEE, Vol. 87 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1999) p. 537. 41. S. Datta and B. Das, Appl. Phys. Lett. 56 (1990) p. 665. 42. P. Bruno and J. Wunderlich, J. Appl. Phys. 84 (1998) p. 978. 43. H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73 (1998) p. 363. 44. E.A. de Andrada e Silva and G.C. La Rocca, Phys. Rev. B 59 (1999) p. R15583. 45. T. Hayashi, M. Tanaka, and A. Asamitsu, J. Appl. Phys. 87 (2000) p. 4673. 46. Th. Gruber, M. Keim, R. Fiederling, G. Reuscher, W. Ossau, G. Schmidt, L. Molenkamp, and A. Waag, Appl. Phys. Lett. 78 (2001) p. 1101. 47. T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88 126601 (2002). 48. A.F. Morpurgo, J.P. Heida, T.M. Klapwijk, B.J. van Wees, and G. Borghs, Phys. Rev. Lett. 80 (1998) p. 1050. 49. J. Nitta, F. Meijer, Y. Narita, and H. Takayanagi, Physica E 6 (2000) p. 318. 50. B.T. Jonker, S.C. Erwin, A. Petrou, and A.G. Petukhov, MRS Bulletin, v28, no.10 (2003) 740, B.T. Jonker, U.S. Patent No. 5,874,749 (February 23, 1999). 51. A.G. Petukhov, A.N. Chantis, and D.O. Demchenko, Phys. Rev. Lett. 89 107205 (2002). 52.16. D. HÄgele, M. Oestreich, W.W. RÝhle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73 (1998) p. 1580. 53. J.M. Kikkawa and D.D. Awschalom, Nature, 397 (1999) p. 139. 54. J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80 (1998) p. 4313. 55. R.I. Dzhioev, K.V. Kavokin, V.L. Korenev, M.V. Lazarev, B. Ya. Meltser, M.N. Stepanova, B.P. Zakharchenya, D. Gammon, and D.S. Katzer, Phys. Rev. B 66 245204 (2002). 56. Y.Q. Jia, R.C. Shi, and S.Y. Chou, IEEE Trans. Magn. 32 (1996) p. 4707. 56. A. Hirohata, Y.B. Xu, C.M. Guertler, J.A.C. Bland, and S.N. Holmes, Phys. Rev. B 63 104425 (2001). 57. J.E. Hirsch, Phys. Rev. Lett. 83 (1999) p. 1834. 58. S. Zhang, Phys. Rev. Lett. 85 (2000) p. 393. 59. F. Meier and B.P. Zakharchenya, Optical Orientation (North-Holland, Amsterdam, 1984). 60. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Chapter 11 (Academic Press, New York, 1991)