Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kodomo.fbb.msu.ru/hg/allpy/annotate/01f9e9c3493e/allpy/base.py
Дата изменения: Unknown
Дата индексирования: Sun Mar 2 07:03:36 2014
Кодировка:
allpy: allpy/base.py annotate

allpy

annotate allpy/base.py @ 384:01f9e9c3493e

fix buges to repair usecases1.py * undo commit 381 * partially undo commit 379
author boris <bnagaev@gmail.com>
date Wed, 02 Feb 2011 15:37:15 +0300
parents df571a5233fb
children 0857aa872850
rev   line source
me@261 1 import sys
bnagaev@357 2 import re
me@261 3
me@315 4 import util
me@284 5 import fasta
me@260 6
dendik@382 7 # import this very module as means of having all related classes in one place
dendik@382 8 import base
dendik@382 9
me@306 10 default_gaps = set((".", "-", "~"))
me@306 11 """Set of characters to recoginze as gaps when parsing alignment."""
me@306 12
me@328 13 class Monomer(object):
me@328 14 """Monomer object."""
me@260 15
me@328 16 type = None
me@328 17 """Either of 'dna', 'rna', 'protein'."""
me@260 18
dendik@382 19 types = base
dendik@382 20 """Mapping of related types. SHOULD be redefined in subclasses."""
dendik@382 21
me@260 22 by_code1 = {}
me@328 23 """A mapping from 1-letter code to Monomer subclass."""
me@328 24
me@260 25 by_code3 = {}
me@328 26 """A mapping from 3-letter code to Monomer subclass."""
me@328 27
me@260 28 by_name = {}
me@328 29 """A mapping from full monomer name to Monomer subclass."""
me@260 30
me@260 31 @classmethod
me@328 32 def _subclass(cls, name='', code1='', code3='', is_modified=False):
me@328 33 """Create new subclass of Monomer for given monomer type."""
me@328 34 class TheMonomer(cls):
me@328 35 pass
me@328 36 name = name.strip().capitalize()
me@328 37 code1 = code1.upper()
me@328 38 code3 = code3.upper()
bnagaev@357 39 TheMonomer.__name__ = re.sub(r"[^\w]", "_", name)
me@328 40 TheMonomer.name = name
me@328 41 TheMonomer.code1 = code1
me@328 42 TheMonomer.code3 = code3
me@328 43 TheMonomer.is_modified = is_modified
me@328 44 if not is_modified:
me@328 45 cls.by_code1[code1] = TheMonomer
me@328 46 cls.by_code3[code3] = TheMonomer
me@328 47 cls.by_name[name] = TheMonomer
me@328 48 # We duplicate distinguished long names into Monomer itself, so that we
me@328 49 # can use Monomer.from_code3 to create the relevant type of monomer.
me@328 50 Monomer.by_code3[code3] = TheMonomer
me@328 51 Monomer.by_name[name] = TheMonomer
me@260 52
me@328 53 @classmethod
me@353 54 def _initialize(cls, codes=None):
me@328 55 """Create all relevant subclasses of Monomer."""
me@328 56 # NB. The table uses letters d, r, p for types,
me@328 57 # while we use full words; hence, we compare by first letter
bnagaev@378 58 for code1, is_modified, code3, name in codes:
bnagaev@378 59 cls._subclass(name, code1, code3, is_modified)
me@260 60
me@260 61 @classmethod
me@260 62 def from_code1(cls, code1):
me@328 63 """Create new monomer from 1-letter code."""
me@328 64 return cls.by_code1[code1.upper()]()
me@260 65
me@260 66 @classmethod
me@260 67 def from_code3(cls, code3):
me@328 68 """Create new monomer from 3-letter code."""
me@328 69 return cls.by_code3[code3.upper()]()
me@260 70
me@260 71 @classmethod
me@260 72 def from_name(cls, name):
me@328 73 """Create new monomer from full name."""
me@328 74 return cls.by_name[name.strip().capitalize()]()
me@260 75
me@329 76 def __repr__(self):
me@329 77 return '<Monomer %s>' % self.code3
me@329 78
me@329 79 def __str__(self):
me@329 80 """Returns one-letter code"""
me@329 81 return self.code1
me@329 82
me@260 83 def __eq__(self, other):
me@328 84 """Monomers within same monomer type are compared by code1."""
me@328 85 assert self.type == other.type
me@328 86 return self.code1 == other.code1
bnagaev@239 87
bnagaev@239 88 class Sequence(list):
me@274 89 """Sequence of Monomers.
bnagaev@243 90
me@274 91 This behaves like list of monomer objects. In addition to standard list
me@274 92 behaviour, Sequence has the following attributes:
me@270 93
me@274 94 * name -- str with the name of the sequence
me@274 95 * description -- str with description of the sequence
me@274 96 * source -- str denoting source of the sequence
me@266 97
me@274 98 Any of them may be empty (i.e. hold empty string)
me@274 99 """
me@270 100
dendik@382 101 types = base
dendik@382 102 """Mapping of related types. SHOULD be redefined in subclasses."""
me@270 103
me@275 104 name = ''
me@275 105 description = ''
me@275 106 source = ''
me@275 107
me@347 108 @classmethod
me@347 109 def from_monomers(cls, monomers=[], name=None, description=None, source=None):
me@347 110 """Create sequence from a list of monomer objecst."""
bnagaev@378 111 result = cls(monomers)
me@275 112 if name:
me@347 113 result.name = name
me@275 114 if description:
me@347 115 result.description = description
me@275 116 if source:
me@347 117 result.source = source
me@347 118 return result
me@347 119
me@347 120 @classmethod
me@347 121 def from_string(cls, string, name='', description='', source=''):
me@347 122 """Create sequences from string of one-letter codes."""
dendik@382 123 monomer = cls.types.Monomer.from_code1
me@347 124 monomers = [monomer(letter) for letter in string]
me@347 125 return cls.from_monomers(monomers, name, description, source)
me@270 126
me@329 127 def __repr__(self):
me@329 128 return '<Sequence %s>' % str(self)
me@329 129
me@262 130 def __str__(self):
me@329 131 """Returns sequence of one-letter codes."""
me@275 132 return ''.join(monomer.code1 for monomer in self)
me@270 133
me@316 134 def __hash__(self):
me@316 135 """Hash sequence by identity."""
me@316 136 return id(self)
me@316 137
me@295 138 class Alignment(object):
me@295 139 """Alignment. It is a list of Columns."""
bnagaev@249 140
dendik@382 141 types = base
dendik@382 142 """Mapping of related types. SHOULD be redefined in subclasses."""
me@288 143
me@289 144 sequences = None
me@289 145 """Ordered list of sequences in alignment. Read, but DO NOT FIDDLE!"""
bnagaev@249 146
me@287 147 def __init__(self):
me@287 148 """Initialize empty alignment."""
me@287 149 self.sequences = []
me@295 150 self.columns = []
me@282 151
me@362 152 # Alignment grow & IO methods
me@299 153 # ==============================
me@299 154
me@294 155 def append_sequence(self, sequence):
me@365 156 """Add sequence to alignment. Return self.
me@294 157
me@294 158 If sequence is too short, pad it with gaps on the right.
me@294 159 """
me@294 160 self.sequences.append(sequence)
me@294 161 for i, monomer in enumerate(sequence):
me@366 162 self._column_at(i)[sequence] = monomer
me@365 163 return self
me@294 164
me@364 165 def append_row_from_string(self, string,
me@364 166 name='', description='', source='', gaps=default_gaps):
me@364 167 """Add row from a string of one-letter codes and gaps. Return self."""
dendik@382 168 Sequence = self.types.Sequence
me@306 169 not_gap = lambda (i, char): char not in gaps
me@349 170 without_gaps = util.remove_each(string, gaps)
me@321 171 sequence = Sequence.from_string(without_gaps, name, description, source)
me@303 172 # The following line has some simple magic:
me@303 173 # 1. attach natural numbers to monomers
me@303 174 # 2. delete gaps
me@303 175 # 3. attach numbers again
me@303 176 # This way we have a pair of numbers attached to monomer:
me@303 177 # - it's position in alignment (the first attached number, j)
me@303 178 # - it's position in sequence (the second attached number, i)
me@349 179 for i, (j, char) in enumerate(filter(not_gap, enumerate(string))):
me@366 180 self._column_at(j)[sequence] = sequence[i]
me@287 181 self.sequences.append(sequence)
me@364 182 return self
me@287 183
me@366 184 def _column_at(self, n):
me@366 185 """Return column by index. Create new columns if required."""
me@302 186 for i in range(len(self.columns), n + 1):
me@302 187 self.columns.append(Column())
me@302 188 return self.columns[n]
me@302 189
me@362 190 def append_file(self, file, format='fasta', gaps=default_gaps):
me@365 191 """Append sequences from file to alignment. Return self.
me@299 192
me@362 193 If sequences in file have gaps (detected as characters belonging to
me@362 194 `gaps` set), treat them accordingly.
me@362 195 """
me@367 196 assert format == 'fasta', "We don't support other formats yet"
me@313 197 for (name, description, body) in fasta.parse_file(file):
bnagaev@378 198 self.append_row_from_string(body, name, description, file.name, gaps)
me@287 199 return self
bnagaev@249 200
me@367 201 def to_file(self, file, format='fasta'):
me@292 202 """Write alignment in FASTA file as sequences with gaps."""
me@367 203 assert format == "fasta", "We don't support other formats yet"
me@292 204 def char(monomer):
me@292 205 if monomer:
me@292 206 return monomer.code1
me@292 207 return "-"
me@292 208 for row in self.rows_as_lists():
me@292 209 seq = row.sequence
me@292 210 line = "".join(map(char, row))
me@292 211 fasta.save_file(file, line, seq.name, seq.description)
me@292 212
me@299 213 # Data access methods for alignment
me@299 214 # =================================
me@299 215
me@299 216 def rows(self):
me@299 217 """Return list of rows (temporary objects) in alignment.
me@299 218
me@299 219 Each row is a dictionary of { column : monomer }.
me@363 220
me@299 221 For gap positions there is no key for the column in row.
me@299 222
me@299 223 Each row has attribute `sequence` pointing to the sequence the row is
me@299 224 describing.
me@299 225
me@299 226 Modifications of row have no effect on the alignment.
me@299 227 """
me@299 228 # For now, the function returns a list rather than iterator.
me@299 229 # It is yet to see, whether memory performance here becomes critical,
me@299 230 # or is random access useful.
me@299 231 rows = []
me@299 232 for sequence in self.sequences:
me@299 233 row = util.UserDict()
me@299 234 row.sequence = sequence
me@299 235 for column in self.columns:
me@299 236 if sequence in column:
me@299 237 row[column] = column[sequence]
me@299 238 rows.append(row)
me@299 239 return rows
me@299 240
me@299 241 def rows_as_lists(self):
me@299 242 """Return list of rows (temporary objects) in alignment.
me@299 243
me@299 244 Each row here is a list of either monomer or None (for gaps).
me@299 245
me@299 246 Each row has attribute `sequence` pointing to the sequence of row.
me@299 247
me@299 248 Modifications of row have no effect on the alignment.
me@299 249 """
me@299 250 rows = []
me@299 251 for sequence in self.sequences:
me@299 252 row = util.UserList()
me@299 253 row.sequence = sequence
me@299 254 for column in self.columns:
me@299 255 row.append(column.get(sequence))
me@299 256 rows.append(row)
me@299 257 return rows
me@299 258
me@299 259 def columns_as_lists(self):
me@299 260 """Return list of columns (temorary objects) in alignment.
me@299 261
me@299 262 Each column here is a list of either monomer or None (for gaps).
me@299 263
me@299 264 Items of column are sorted in the same way as alignment.sequences.
me@299 265
me@299 266 Modifications of column have no effect on the alignment.
me@299 267 """
me@299 268 columns = []
me@299 269 for column in self.columns:
me@299 270 col = []
me@299 271 for sequence in self.sequences:
me@299 272 col.append(column.get(sequence))
me@299 273 columns.append(col)
me@299 274 return columns
me@299 275
me@368 276 # Alignment / Block editing methods
me@368 277 # =================================
me@368 278
me@368 279 def _flush_row(self, row, whence='left'):
me@368 280 """Helper for `flush`: flush to one side all monomers in one row."""
me@368 281 row = filter(None, row)
me@368 282 padding = [None] * len(self.columns)
me@368 283 if whence == 'left':
me@368 284 return row + padding
me@368 285 if whence == 'right':
me@368 286 return padding + row
me@368 287 if whence == 'center':
me@368 288 pad_len = (len(self.columns) - len(row)) // 2
me@368 289 # vvv fix padding for case when length is odd: better have more
me@368 290 pad_len += len(self.columns) - 2 * pad_len
me@368 291 padding = [None] * pad_len
me@368 292 return padding + row + padding
me@368 293 assert True, "whence must be either 'left' or 'right' or 'center'"
me@368 294
me@368 295 def flush(self, whence='left'):
me@368 296 """Remove all gaps from alignment and flush results to one side.
me@368 297
me@368 298 `whence` must be one of 'left', 'right' or 'center'
me@368 299 """
me@368 300 for row in self.rows_as_lists():
me@368 301 sequence = row.sequence
me@368 302 row = self._flush_row(row, whence)
me@368 303 for monomer, column in zip(row, self.columns):
me@368 304 if monomer:
me@368 305 column[sequence] = monomer
me@368 306 elif sequence in column:
me@368 307 del column[sequence]
me@368 308
me@369 309 def remove_gap_columns(self):
me@369 310 """Remove all empty columns."""
me@369 311 for n, column in reversed(enumerate(self.columns)):
me@369 312 if column == {}:
me@369 313 self.columns[n:n+1] = []
me@369 314
me@371 315 def _wipe(self):
me@371 316 """Make all positions gaps (but keep sequences intact)."""
me@371 317 for column in self.columns:
bnagaev@378 318 for sequence in list(column.keys()):
me@371 319 del column[sequence]
me@371 320
me@372 321 def _merge(self, dst, new, merge):
me@373 322 """Replace contents of `dst` with those of `new`.
me@372 323
me@372 324 Replace contents of elements using function `merge(dst_el, new_le)`.
me@372 325 """
bnagaev@384 326 for el, new_el in zip(dst, new):
bnagaev@384 327 merge(el, new_el)
me@372 328 dst[len(dst):] = new[len(dst):]
me@372 329 del dst[len(new):]
me@371 330
me@373 331 def _replace_sequence_contents(self, new, copy_descriptions):
me@373 332 """Replace contents of sequences with those of `new` alignment."""
me@371 333 # XXX: we manually copy sequence contents here
me@372 334 # XXX: we only copy, overlapping parts and link to the rest
me@372 335 def merge_monomers(dst, new):
me@372 336 dst.__class__ = new.__class__
me@372 337 def merge_sequences(dst, new):
me@373 338 if copy_descriptions:
me@373 339 vars(dst).update(vars(new))
me@372 340 self._merge(dst, new, merge_monomers)
me@372 341 self._merge(self.sequences, new.sequences, merge_sequences)
me@371 342
me@371 343 def _replace_column_contents(self, new):
me@373 344 """Replace column contents with those of `new` alignment.
me@371 345
me@373 346 Synonym: copy gap patterns from `new` to `self`.
me@372 347
me@373 348 `self.sequences` and `new.sequences` should have the same contents.
me@371 349 """
me@371 350 self._wipe()
me@371 351 not_gap = lambda (a,b): a != None
me@371 352 for sequence, new_row in zip(self.sequences, new.rows_as_lists()):
me@371 353 assert len(sequence) == len(new_row.sequence)
me@371 354 zipped = zip(sequence, filter(not_gap, enumerate(new_row)))
me@371 355 for monomer, (i, _) in zipped:
me@371 356 self._column_at(i)[sequence] = monomer
me@371 357
me@373 358 def _replace_contents(self, new, copy_descriptions, copy_contents):
me@371 359 """Replace alignment contents with those of other alignment."""
me@373 360 if copy_contents:
me@373 361 self._replace_sequence_contents(new, copy_descriptions)
bnagaev@378 362 self._replace_column_contents(new)
me@371 363
me@373 364 def process(self, function, copy_descriptions=True, copy_contents=True):
me@371 365 """Apply function to the alignment (or block); inject results back.
me@371 366
me@373 367 - `function(block)` must return block with same line order.
me@373 368 - if `copy_descriptions` is False, ignore new sequence names.
me@373 369 - if `copy_contents` is False, don't copy sequence contents too.
dendik@380 370
dendik@380 371 `function` (object) may have attributes `copy_descriptions` and
dendik@380 372 `copy_contents`, which override the same named arguments.
me@371 373 """
me@371 374 new = function(self)
dendik@380 375 if hasattr(function, 'copy_descriptions'):
dendik@380 376 copy_descriptions = function.copy_descriptions
dendik@380 377 if hasattr(function, 'copy_contents'):
dendik@380 378 copy_contents = function.copy_contents
me@373 379 self._replace_contents(new, copy_descriptions, copy_contents)
me@371 380
me@300 381 class Column(dict):
me@300 382 """Column of alignment.
me@300 383
me@300 384 Column is a dict of { sequence : monomer }.
me@300 385
me@300 386 For sequences that have gaps in current row, given key is not present in
me@300 387 the column.
me@300 388 """
me@325 389
dendik@382 390 types = base
dendik@382 391 """Mapping of related types. SHOULD be redefined in subclasses."""
dendik@382 392
me@325 393 def __hash__(self):
me@325 394 """Return hash by identity."""
me@325 395 return id(self)
me@300 396
me@317 397 class Block(Alignment):
me@307 398 """Block of alignment.
me@301 399
me@307 400 Block is intersection of a set of columns & a set of rows. Most of blocks
me@307 401 look like rectangular part of alignment if you shuffle alignment rows the
me@307 402 right way.
me@261 403 """
me@270 404
me@307 405 alignment = None
me@307 406 """Alignment the block belongs to."""
me@270 407
me@307 408 sequences = ()
me@307 409 """List of sequences in block."""
me@307 410
me@307 411 columns = ()
me@307 412 """List of columns in block."""
me@307 413
me@317 414 @classmethod
me@317 415 def from_alignment(cls, alignment, sequences=None, columns=None):
me@307 416 """Build new block from alignment.
me@307 417
me@307 418 If sequences are not given, the block uses all sequences in alignment.
me@307 419
me@307 420 If columns are not given, the block uses all columns in alignment.
me@307 421
me@307 422 In both cases we use exactly the list used in alignment, thus, if new
me@307 423 sequences or columns are added to alignment, the block tracks this too.
me@261 424 """
me@307 425 if sequences is None:
me@307 426 sequences = alignment.sequences
me@318 427 if columns is None:
me@307 428 columns = alignment.columns
me@320 429 block = cls()
me@320 430 block.alignment = alignment
me@320 431 block.sequences = sequences
me@320 432 block.columns = columns
me@320 433 return block
me@270 434
me@260 435 # vim: set ts=4 sts=4 sw=4 et: