Документ взят из кэша поисковой машины. Адрес оригинального документа : http://kodomo.fbb.msu.ru/hg/allpy/annotate/4466baf642df/allpy/base.py
Дата изменения: Unknown
Дата индексирования: Sun Mar 2 07:04:50 2014
Кодировка:
allpy: allpy/base.py annotate

allpy

annotate allpy/base.py @ 276:4466baf642df

Removed base.Sequence.from_slice This function is typical case of premature optimization. The current workaround is: Sequence(Sequence.from_file(...)[begin:end]) It would be best (though not implemented yet) if all slice operations on Sequence return Sequence objects immediately.
author Daniil Alexeyevsky <me.dendik@gmail.com>
date Wed, 15 Dec 2010 20:10:03 +0300
parents 4a2341bc90b1
children 327ef1c21aab
rev   line source
me@261 1 import sys
me@261 2 import os
me@262 3 import os.path
me@261 4 from tempfile import NamedTemporaryFile
me@262 5 import urllib2
me@261 6
me@261 7 import config
me@261 8 from graph import Graph
me@262 9 from Bio.PDB.DSSP import make_dssp_dict
bnagaev@249 10 from fasta import save_fasta
me@260 11 import data.codes
me@260 12
me@260 13 class MonomerType(object):
me@260 14 """Class of monomer types.
me@260 15
me@260 16 Each MonomerType object represents a known monomer type, e.g. Valine,
me@260 17 and is referenced to by each instance of monomer in a given sequence.
me@260 18
me@260 19 - `name`: full name of monomer type
me@260 20 - `code1`: one-letter code
me@260 21 - `code3`: three-letter code
me@260 22 - `is_modified`: either of True or False
me@260 23
me@260 24 class atributes:
me@260 25
me@260 26 - `by_code1`: a mapping from one-letter code to MonomerType object
me@260 27 - `by_code3`: a mapping from three-letter code to MonomerType object
me@260 28 - `by_name`: a mapping from monomer name to MonomerType object
me@260 29 - `instance_type`: class of Monomer objects to use when creating new
me@260 30 objects; this must be redefined in descendent classes
me@260 31
me@260 32 All of the class attributes MUST be redefined when subclassing.
me@260 33 """
me@260 34
me@260 35 by_code1 = {}
me@260 36 by_code3 = {}
me@260 37 by_name = {}
me@260 38 instance_type = None
me@260 39
me@260 40 def __init__(self, name="", code1="", code3="", is_modified=False):
me@260 41 self.name = name.capitalize()
me@260 42 self.code1 = code1.upper()
me@260 43 self.code3 = code3.upper()
me@260 44 self.is_modified = bool(is_modified)
me@260 45 if not is_modified:
me@260 46 self.by_code1[self.code1] = self
me@260 47 self.by_code3[code3] = self
me@260 48 self.by_name[name] = self
me@260 49 # We duplicate distinguished long names into MonomerType itself,
me@260 50 # so that we can use MonomerType.from_code3 to create the relevant
me@260 51 # type of monomer.
me@260 52 MonomerType.by_code3[code3] = self
me@260 53 MonomerType.by_name[name] = self
me@260 54
me@260 55 @classmethod
me@260 56 def _initialize(cls, type_letter, codes=data.codes.codes):
me@260 57 """Create all relevant instances of MonomerType.
me@260 58
me@260 59 `type_letter` is either of:
me@260 60
me@260 61 - 'p' for protein
me@260 62 - 'd' for DNA
me@260 63 - 'r' for RNA
me@260 64
me@260 65 `codes` is a table of monomer codes
me@260 66 """
me@260 67 for type, code1, is_modified, code3, name in codes:
me@260 68 if type == type_letter:
me@260 69 cls(name, code1, code3, is_modified)
me@260 70
me@260 71 @classmethod
me@260 72 def from_code1(cls, code1):
me@260 73 """Return monomer type by one-letter code."""
me@260 74 return cls.by_code1[code1.upper()]
me@260 75
me@260 76 @classmethod
me@260 77 def from_code3(cls, code3):
me@260 78 """Return monomer type by three-letter code."""
me@260 79 return cls.by_code3[code3.upper()]
me@260 80
me@260 81 @classmethod
me@260 82 def from_name(cls, name):
me@260 83 """Return monomer type by name."""
me@260 84 return cls.by_name[name.capitalize()]
me@260 85
me@260 86 def instance(self):
me@260 87 """Create a new monomer of given type."""
me@260 88 return self.instance_type(self)
me@260 89
me@260 90 def __eq__(self, other):
me@260 91 if hasattr(other, "type"):
me@260 92 return self is other.type
me@260 93 return self is other
me@260 94
me@260 95 class Monomer(object):
me@260 96 """Monomer object.
me@260 97
me@260 98 attributes:
me@260 99
me@260 100 - `type`: type of monomer (a MonomerType object)
me@260 101
me@260 102 class attribute `monomer_type` is MonomerType or either of it's subclasses,
me@260 103 it is used when creating new monomers. It MUST be redefined when subclassing Monomer.
me@260 104 """
me@260 105 monomer_type = MonomerType
me@260 106
me@260 107 def __init__(self, type):
me@260 108 self.type = type
me@260 109
me@260 110 @classmethod
me@260 111 def from_code1(cls, code1):
me@260 112 return cls(cls.monomer_type.by_code1[code1.upper()])
me@260 113
me@260 114 @classmethod
me@260 115 def from_code3(cls, code3):
me@260 116 return cls(cls.monomer_type.by_code3[code3.upper()])
me@260 117
me@260 118 @classmethod
me@260 119 def from_name(cls, name):
me@260 120 return cls(cls.monomer_type.by_name[name.capitalize()])
me@260 121
me@260 122 def __eq__(self, other):
me@260 123 if hasattr(other, "type"):
me@260 124 return self.type is other.type
me@260 125 return self.type is other
bnagaev@239 126
bnagaev@239 127 class Sequence(list):
me@274 128 """Sequence of Monomers.
bnagaev@243 129
me@274 130 This behaves like list of monomer objects. In addition to standard list
me@274 131 behaviour, Sequence has the following attributes:
me@270 132
me@274 133 * name -- str with the name of the sequence
me@274 134 * description -- str with description of the sequence
me@274 135 * source -- str denoting source of the sequence
me@266 136
me@274 137 Any of them may be empty (i.e. hold empty string)
me@275 138
me@275 139 Class attributes:
me@275 140 * monomer_type -- type of monomers in sequence, must be redefined when
me@275 141 subclassing
me@274 142 """
me@270 143
me@275 144 monomer_type = Monomer
me@270 145
me@275 146 name = ''
me@275 147 description = ''
me@275 148 source = ''
me@275 149
me@275 150 def __init__(self, sequence=[], name=None, description=None, source=None):
me@275 151 super(Sequence, self).__init__(sequence)
me@275 152 if hasattr(sequence, 'name'):
me@275 153 vars(self).update(vars(sequence))
me@275 154 if name:
me@275 155 self.name = name
me@275 156 if description:
me@275 157 self.description = description
me@275 158 if source:
me@275 159 self.source = source
me@270 160
me@262 161 def __str__(self):
me@275 162 """Returns sequence in one-letter code."""
me@275 163 return ''.join(monomer.code1 for monomer in self)
me@270 164
me@273 165 @classmethod
me@273 166 def from_string(cls, string, name='', description=''):
me@273 167 """Create sequences from string of one-letter codes."""
me@273 168 monomer = cls.monomer_type.from_code1
me@273 169 monomers = [monomer(letter) for letter in string]
me@273 170 return cls(monomers, name, description)
me@262 171
bnagaev@249 172 class Alignment(dict):
bnagaev@249 173 """ Alignment
me@270 174
bnagaev@249 175 {<Sequence object>:[<Monomer object>,None,<Monomer object>]}
me@266 176
bnagaev@249 177 keys are the Sequence objects, values are the lists, which
bnagaev@249 178 contain monomers of those sequences or None for gaps in the
bnagaev@249 179 corresponding sequence of alignment
bnagaev@249 180 """
bnagaev@249 181 # _sequences -- list of Sequence objects. Sequences don't contain gaps
bnagaev@249 182 # - see sequence.py module
bnagaev@249 183
bnagaev@249 184 def __init__(self, *args):
bnagaev@249 185 """overloaded constructor
bnagaev@249 186
bnagaev@249 187 Alignment() -> new empty Alignment
bnagaev@249 188 Alignment(sequences, body) -> new Alignment with sequences and
bnagaev@249 189 body initialized from arguments
bnagaev@249 190 Alignment(fasta_file) -> new Alignment, read body and sequences
me@270 191 from fasta file
bnagaev@249 192
bnagaev@249 193 """
bnagaev@249 194 if len(args)>1:#overloaded constructor
bnagaev@249 195 self.sequences=args[0]
bnagaev@249 196 self.body=args[1]
bnagaev@249 197 elif len(args)==0:
bnagaev@249 198 self.sequences=[]
bnagaev@249 199 self.body={}
bnagaev@249 200 else:
bnagaev@249 201 self.sequences, self.body = Alignment.from_fasta(args[0])
bnagaev@249 202
bnagaev@249 203 def length(self):
bnagaev@249 204 """ Returns width, ie length of each sequence with gaps """
bnagaev@249 205 return max([len(line) for line in self.body.values()])
bnagaev@249 206
bnagaev@249 207 def height(self):
bnagaev@249 208 """ The number of sequences in alignment (it's thickness). """
bnagaev@249 209 return len(self.body)
bnagaev@249 210
bnagaev@249 211 def identity(self):
bnagaev@249 212 """ Calculate the identity of alignment positions for colouring.
bnagaev@249 213
bnagaev@249 214 For every (row, column) in alignment the percentage of the exactly
bnagaev@249 215 same residue in the same column in the alignment is calculated.
me@270 216 The data structure is just like the Alignment.body, but istead of
bnagaev@249 217 monomers it contains float percentages.
bnagaev@249 218 """
bnagaev@249 219 # Oh, God, that's awful! Absolutely not understandable.
bnagaev@249 220 # First, calculate percentages of amino acids in every column
bnagaev@249 221 contribution = 1.0 / len(self.sequences)
bnagaev@249 222 all_columns = []
bnagaev@249 223 for position in range(len(self)):
bnagaev@249 224 column_percentage = {}
bnagaev@249 225 for seq in self.body:
bnagaev@249 226 if self.body[seq][position] is not None:
bnagaev@249 227 aa = self.body[seq][position].code
bnagaev@249 228 else:
bnagaev@249 229 aa = None
bnagaev@249 230 if aa in allpy.data.amino_acids:
bnagaev@249 231 if aa in column_percentage.keys():
bnagaev@249 232 column_percentage[aa] += contribution
bnagaev@249 233 else:
bnagaev@249 234 column_percentage[aa] = contribution
bnagaev@249 235 all_columns.append(column_percentage)
bnagaev@249 236 # Second, map these percentages onto the alignment
bnagaev@249 237 self.identity_percentages = {}
bnagaev@249 238 for seq in self.sequences:
bnagaev@249 239 self.identity_percentages[seq] = []
bnagaev@249 240 for seq in self.identity_percentages:
bnagaev@249 241 line = self.identity_percentages[seq]
bnagaev@249 242 for position in range(len(self)):
bnagaev@249 243 if self.body[seq][position] is not None:
bnagaev@249 244 aa = self.body[seq][position].code
bnagaev@249 245 else:
bnagaev@249 246 aa = None
bnagaev@249 247 line.append(all_columns[position].get(aa))
bnagaev@249 248 return self.identity_percentages
bnagaev@249 249
bnagaev@249 250 @staticmethod
bnagaev@249 251 def from_fasta(file, monomer_kind=AminoAcidType):
bnagaev@249 252 """ Import data from fasta file
me@270 253
bnagaev@249 254 monomer_kind is class, inherited from MonomerType
me@270 255
bnagaev@249 256 >>> import alignment
me@270 257 >>> sequences,body=alignment.Alignment.from_fasta(open("test.fasta"))
bnagaev@249 258 """
bnagaev@249 259 import re
bnagaev@249 260
bnagaev@249 261 sequences = []
bnagaev@249 262 body = {}
bnagaev@249 263
bnagaev@249 264 raw_sequences = file.read().split(">")
bnagaev@249 265 if len(raw_sequences) <= 1:
bnagaev@249 266 raise Exception("Wrong format of fasta-file %s" % file.name)
me@270 267
bnagaev@249 268 raw_sequences = raw_sequences[1:] #ignore everything before the first >
bnagaev@249 269 for raw in raw_sequences:
bnagaev@249 270 parsed_raw_sequence = raw.split("\n")
bnagaev@249 271 parsed_raw_sequence = [s.strip() for s in parsed_raw_sequence]
bnagaev@249 272 name_and_description = parsed_raw_sequence[0]
bnagaev@249 273 name_and_description = name_and_description.split(" ",1)
bnagaev@249 274 if len(name_and_description) == 2:
bnagaev@249 275 name, description = name_and_description
me@270 276 elif len(name_and_description) == 1:
bnagaev@249 277 #if there is description
bnagaev@249 278 name = name_and_description[0]
bnagaev@249 279 description = ''
bnagaev@249 280 else:
bnagaev@249 281 raise Exception("Wrong name of sequence %(name)$ fasta-file %(file)s" % \
bnagaev@249 282 {'name': name, 'file': file.name})
me@270 283
bnagaev@249 284 if len(parsed_raw_sequence) <= 1:
bnagaev@249 285 raise Exception("Wrong format of sequence %(name)$ fasta-file %(file)s" % \
bnagaev@249 286 {'name': name, 'file': file.name})
bnagaev@249 287 string = ""
bnagaev@249 288 for piece in parsed_raw_sequence[1:]:
bnagaev@249 289 piece_without_whitespace_chars = re.sub("\s", "", piece)
bnagaev@249 290 string += piece_without_whitespace_chars
bnagaev@249 291 monomers = [] #convert into Monomer objects
bnagaev@249 292 body_list = [] #create the respective list in body dict
bnagaev@249 293 for current_monomer in string:
bnagaev@249 294 if current_monomer not in ["-", ".", "~"]:
bnagaev@249 295 monomers.append(monomer_kind.from_code1(current_monomer).instance())
bnagaev@249 296 body_list.append(monomers[-1])
bnagaev@249 297 else:
bnagaev@249 298 body_list.append(None)
bnagaev@249 299 s = sequence.Sequence(monomers, name, description)
bnagaev@249 300 sequences.append(s)
bnagaev@249 301 body[s] = body_list
bnagaev@249 302 return sequences, body
me@270 303
bnagaev@249 304 @staticmethod
bnagaev@249 305 def from_sequences(*sequences):
bnagaev@249 306 """ Constructs new alignment from sequences
me@270 307
me@270 308 Add None's to right end to make equal lengthes of alignment sequences
bnagaev@249 309 """
bnagaev@249 310 alignment = Alignment()
bnagaev@249 311 alignment.sequences = sequences
bnagaev@249 312 max_length = max(len(sequence) for sequence in sequences)
bnagaev@249 313 for sequence in sequences:
bnagaev@249 314 gaps_count = max_length - len(sequence)
bnagaev@249 315 alignment.body[sequence] = sequence.monomers + [None] * gaps_count
bnagaev@249 316 return alignment
me@270 317
bnagaev@249 318 def save_fasta(self, out_file, long_line=70, gap='-'):
bnagaev@249 319 """ Saves alignment to given file
me@270 320
bnagaev@249 321 Splits long lines to substrings of length=long_line
me@270 322 To prevent this, set long_line=None
bnagaev@249 323 """
bnagaev@249 324 block.Block(self).save_fasta(out_file, long_line=long_line, gap=gap)
me@270 325
bnagaev@249 326 def muscle_align(self):
bnagaev@249 327 """ Simple align ths alignment using sequences (muscle)
me@270 328
bnagaev@249 329 uses old Monomers and Sequences objects
bnagaev@249 330 """
bnagaev@249 331 tmp_file = NamedTemporaryFile(delete=False)
bnagaev@249 332 self.save_fasta(tmp_file)
bnagaev@249 333 tmp_file.close()
bnagaev@249 334 os.system("muscle -in %(tmp)s -out %(tmp)s" % {'tmp': tmp_file.name})
bnagaev@249 335 sequences, body = Alignment.from_fasta(open(tmp_file.name))
bnagaev@249 336 for sequence in self.sequences:
bnagaev@249 337 try:
bnagaev@249 338 new_sequence = [i for i in sequences if sequence==i][0]
bnagaev@249 339 except:
bnagaev@249 340 raise Exception("Align: Cann't find sequence %s in muscle output" % \
bnagaev@249 341 sequence.name)
bnagaev@249 342 old_monomers = iter(sequence.monomers)
bnagaev@249 343 self.body[sequence] = []
bnagaev@249 344 for monomer in body[new_sequence]:
bnagaev@249 345 if not monomer:
bnagaev@249 346 self.body[sequence].append(monomer)
bnagaev@249 347 else:
bnagaev@249 348 old_monomer = old_monomers.next()
bnagaev@249 349 if monomer != old_monomer:
bnagaev@249 350 raise Exception("Align: alignment errors")
bnagaev@249 351 self.body[sequence].append(old_monomer)
bnagaev@249 352 os.unlink(tmp_file.name)
me@270 353
bnagaev@249 354 def column(self, sequence=None, sequences=None, original=None):
bnagaev@249 355 """ returns list of columns of alignment
me@270 356
bnagaev@249 357 sequence or sequences:
bnagaev@249 358 if sequence is given, then column is (original_monomer, monomer)
me@270 359 if sequences is given, then column is (original_monomer, {sequence: monomer})
bnagaev@249 360 if both of them are given, it is an error
bnagaev@249 361 original (Sequence type):
bnagaev@249 362 if given, this filters only columns represented by original sequence
bnagaev@249 363 """
bnagaev@249 364 if sequence and sequences:
bnagaev@249 365 raise Exception("Wrong usage. read help")
bnagaev@249 366 indexes = dict([(v, k) for( k, v) in enumerate(self.sequences)])
bnagaev@249 367 alignment = self.body.items()
bnagaev@249 368 alignment.sort(key=lambda i: indexes[i[0]])
bnagaev@249 369 alignment = [monomers for seq, monomers in alignment]
bnagaev@249 370 for column in zip(*alignment):
bnagaev@249 371 if not original or column[indexes[original]]:
bnagaev@249 372 if sequence:
bnagaev@249 373 yield (column[indexes[original]], column[indexes[sequence]])
bnagaev@249 374 else:
me@270 375 yield (column[indexes[original]],
bnagaev@249 376 dict([(s, column[indexes[s]]) for s in sequences]))
me@270 377
bnagaev@249 378 def secstr(self, sequence, pdb_chain, gap='-'):
bnagaev@249 379 """ Returns string representing secondary structure """
bnagaev@249 380 return ''.join([
me@270 381 (sequence.pdb_secstr[pdb_chain][m] if sequence.secstr_has(pdb_chain, m) else gap)
bnagaev@249 382 for m in self.body[sequence]])
bnagaev@249 383
bnagaev@249 384 class Block(object):
me@261 385 """ Block of alignment
me@270 386
me@261 387 Mandatory data:
me@266 388
me@261 389 * self.alignment -- alignment object, which the block belongs to
me@261 390 * self.sequences - set of sequence objects that contain monomers
me@261 391 and/or gaps, that constitute the block
me@261 392 * self.positions -- list of positions of the alignment.body that
me@261 393 are included in the block; position[i+1] is always to the right from position[i]
me@270 394
me@261 395 Don't change self.sequences -- it may be a link to other block.sequences
me@270 396
me@261 397 How to create a new block:
me@261 398 >>> import alignment
me@261 399 >>> import block
me@261 400 >>> proj = alignment.Alignment(open("test.fasta"))
me@261 401 >>> block1 = block.Block(proj)
me@261 402 """
me@270 403
me@261 404 def __init__(self, alignment, sequences=None, positions=None):
me@261 405 """ Builds new block from alignment
me@270 406
me@261 407 if sequences==None, all sequences are used
me@261 408 if positions==None, all positions are used
me@261 409 """
me@261 410 if sequences == None:
me@261 411 sequences = set(alignment.sequences) # copy
me@261 412 if positions == None:
me@261 413 positions = range(len(alignment))
me@261 414 self.alignment = alignment
me@261 415 self.sequences = sequences
me@261 416 self.positions = positions
me@270 417
me@261 418 def save_fasta(self, out_file, long_line=70, gap='-'):
me@270 419 """ Saves alignment to given file in fasta-format
me@270 420
me@261 421 No changes in the names, descriptions or order of the sequences
me@261 422 are made.
me@261 423 """
me@261 424 for sequence in self.sequences:
me@261 425 alignment_monomers = self.alignment.body[sequence]
me@261 426 block_monomers = [alignment_monomers[i] for i in self.positions]
me@261 427 string = ''.join([m.type.code1 if m else '-' for m in block_monomers])
me@261 428 save_fasta(out_file, string, sequence.name, sequence.description, long_line)
me@270 429
me@270 430 def geometrical_cores(self, max_delta=config.delta,
me@270 431 timeout=config.timeout, minsize=config.minsize,
me@261 432 ac_new_atoms=config.ac_new_atoms,
me@261 433 ac_count=config.ac_count):
me@261 434 """ Returns length-sorted list of blocks, representing GCs
me@270 435
me@261 436 max_delta -- threshold of distance spreading
me@261 437 timeout -- Bron-Kerbosh timeout (then fast O(n ln n) algorithm)
me@261 438 minsize -- min size of each core
me@261 439 ac_new_atoms -- min part or new atoms in new alternative core
me@261 440 current GC is compared with each of already selected GCs
me@261 441 if difference is less then ac_new_atoms, current GC is skipped
me@261 442 difference = part of new atoms in current core
me@261 443 ac_count -- max number of cores (including main core)
me@261 444 -1 means infinity
me@261 445 If more than one pdb chain for some sequence provided, consider all of them
me@270 446 cost is calculated as 1 / (delta + 1)
me@261 447 delta in [0, +inf) => cost in (0, 1]
me@261 448 """
me@261 449 nodes = self.positions
me@261 450 lines = {}
me@261 451 for i in self.positions:
me@261 452 for j in self.positions:
me@261 453 if i < j:
me@261 454 distances = []
me@261 455 for sequence in self.sequences:
me@261 456 for chain in sequence.pdb_chains:
me@261 457 m1 = self.alignment.body[sequence][i]
me@261 458 m2 = self.alignment.body[sequence][j]
me@261 459 if m1 and m2:
me@261 460 r1 = sequence.pdb_residues[chain][m1]
me@261 461 r2 = sequence.pdb_residues[chain][m2]
me@261 462 ca1 = r1['CA']
me@261 463 ca2 = r2['CA']
me@261 464 d = ca1 - ca2 # Bio.PDB feature
me@261 465 distances.append(d)
me@261 466 if len(distances) >= 2:
me@261 467 delta = max(distances) - min(distances)
me@261 468 if delta <= max_delta:
me@261 469 lines[Graph.line(i, j)] = 1.0 / (1.0 + max_delta)
me@261 470 graph = Graph(nodes, lines)
me@261 471 cliques = graph.cliques(timeout=timeout, minsize=minsize)
me@261 472 GCs = []
me@261 473 for clique in cliques:
me@261 474 for GC in GCs:
me@261 475 if len(clique - set(GC.positions)) < ac_new_atoms * len(clique):
me@261 476 break
me@261 477 else:
me@261 478 GCs.append(Block(self.alignment, self.sequences, clique))
me@261 479 if ac_count != -1 and len(GCs) >= ac_count:
me@261 480 break
me@261 481 return GCs
me@270 482
me@261 483 def xstring(self, x='X', gap='-'):
me@261 484 """ Returns string consisting of gap chars and chars x at self.positions
me@270 485
me@261 486 Length of returning string = length of alignment
me@261 487 """
me@261 488 monomers = [False] * len(self.alignment)
me@261 489 for i in self.positions:
me@261 490 monomers[i] = True
me@261 491 return ''.join([x if m else gap for m in monomers])
me@270 492
me@261 493 def save_xstring(self, out_file, name, description='', x='X', gap='-', long_line=70):
me@261 494 """ Save xstring and name in fasta format """
me@261 495 save_fasta(out_file, self.xstring(x=x, gap=gap), name, description, long_line)
me@270 496
me@261 497 def monomers(self, sequence):
me@261 498 """ Iterates monomers of this sequence from this block """
me@261 499 alignment_sequence = self.alignment.body[sequence]
me@261 500 return (alignment_sequence[i] for i in self.positions)
me@270 501
me@261 502 def ca_atoms(self, sequence, pdb_chain):
me@261 503 """ Iterates Ca-atom of monomers of this sequence from this block """
me@261 504 return (sequence.pdb_residues[pdb_chain][monomer] for monomer in self.monomers())
me@270 505
me@261 506 def sequences_chains(self):
me@261 507 """ Iterates pairs (sequence, chain) """
me@261 508 for sequence in self.alignment.sequences:
me@261 509 if sequence in self.sequences:
me@261 510 for chain in sequence.pdb_chains:
me@261 511 yield (sequence, chain)
me@270 512
me@261 513 def superimpose(self):
me@261 514 """ Superimpose all pdb_chains in this block """
me@261 515 sequences_chains = list(self.sequences_chains())
me@261 516 if len(sequences_chains) >= 1:
me@261 517 sup = Superimposer()
me@261 518 fixed_sequence, fixed_chain = sequences_chains.pop()
me@261 519 fixed_atoms = self.ca_atoms(fixed_sequence, fixed_chain)
me@261 520 for sequence, chain in sequences_chains:
me@261 521 moving_atoms = self.ca_atoms(sequence, chain)
me@261 522 sup.set_atoms(fixed_atoms, moving_atoms)
me@261 523 # Apply rotation/translation to the moving atoms
me@261 524 sup.apply(moving_atoms)
me@270 525
me@261 526 def pdb_save(self, out_file):
me@270 527 """ Save all sequences
me@270 528
me@261 529 Returns {(sequence, chain): CHAIN}
me@261 530 CHAIN is chain letter in new file
me@261 531 """
me@261 532 tmp_file = NamedTemporaryFile(delete=False)
me@261 533 tmp_file.close()
me@270 534
me@261 535 for sequence, chain in self.sequences_chains():
me@261 536 sequence.pdb_save(tmp_file.name, chain)
me@261 537 # TODO: read from tmp_file.name
me@261 538 # change CHAIN
me@261 539 # add to out_file
me@270 540
me@261 541 os.unlink(NamedTemporaryFile)
bnagaev@239 542
me@260 543 # vim: set ts=4 sts=4 sw=4 et: