rev |
line source |
me@261
|
1 import sys |
me@261
|
2 import os |
me@262
|
3 import os.path |
me@261
|
4 from tempfile import NamedTemporaryFile |
me@262
|
5 import urllib2 |
me@261
|
6 |
me@261
|
7 import config |
me@261
|
8 from graph import Graph |
me@262
|
9 from Bio.PDB.DSSP import make_dssp_dict |
bnagaev@249
|
10 from fasta import save_fasta |
me@260
|
11 import data.codes |
me@260
|
12 |
me@260
|
13 class MonomerType(object): |
me@260
|
14 """Class of monomer types. |
me@260
|
15 |
me@260
|
16 Each MonomerType object represents a known monomer type, e.g. Valine, |
me@260
|
17 and is referenced to by each instance of monomer in a given sequence. |
me@260
|
18 |
me@260
|
19 - `name`: full name of monomer type |
me@260
|
20 - `code1`: one-letter code |
me@260
|
21 - `code3`: three-letter code |
me@260
|
22 - `is_modified`: either of True or False |
me@260
|
23 |
me@260
|
24 class atributes: |
me@260
|
25 |
me@260
|
26 - `by_code1`: a mapping from one-letter code to MonomerType object |
me@260
|
27 - `by_code3`: a mapping from three-letter code to MonomerType object |
me@260
|
28 - `by_name`: a mapping from monomer name to MonomerType object |
me@260
|
29 - `instance_type`: class of Monomer objects to use when creating new |
me@260
|
30 objects; this must be redefined in descendent classes |
me@260
|
31 |
me@260
|
32 All of the class attributes MUST be redefined when subclassing. |
me@260
|
33 """ |
me@260
|
34 |
me@260
|
35 by_code1 = {} |
me@260
|
36 by_code3 = {} |
me@260
|
37 by_name = {} |
me@260
|
38 instance_type = None |
me@260
|
39 |
me@260
|
40 def __init__(self, name="", code1="", code3="", is_modified=False): |
me@260
|
41 self.name = name.capitalize() |
me@260
|
42 self.code1 = code1.upper() |
me@260
|
43 self.code3 = code3.upper() |
me@260
|
44 self.is_modified = bool(is_modified) |
me@260
|
45 if not is_modified: |
me@260
|
46 self.by_code1[self.code1] = self |
me@260
|
47 self.by_code3[code3] = self |
me@260
|
48 self.by_name[name] = self |
me@260
|
49 # We duplicate distinguished long names into MonomerType itself, |
me@260
|
50 # so that we can use MonomerType.from_code3 to create the relevant |
me@260
|
51 # type of monomer. |
me@260
|
52 MonomerType.by_code3[code3] = self |
me@260
|
53 MonomerType.by_name[name] = self |
me@260
|
54 |
me@260
|
55 @classmethod |
me@260
|
56 def _initialize(cls, type_letter, codes=data.codes.codes): |
me@260
|
57 """Create all relevant instances of MonomerType. |
me@260
|
58 |
me@260
|
59 `type_letter` is either of: |
me@260
|
60 |
me@260
|
61 - 'p' for protein |
me@260
|
62 - 'd' for DNA |
me@260
|
63 - 'r' for RNA |
me@260
|
64 |
me@260
|
65 `codes` is a table of monomer codes |
me@260
|
66 """ |
me@260
|
67 for type, code1, is_modified, code3, name in codes: |
me@260
|
68 if type == type_letter: |
me@260
|
69 cls(name, code1, code3, is_modified) |
me@260
|
70 |
me@260
|
71 @classmethod |
me@260
|
72 def from_code1(cls, code1): |
me@260
|
73 """Return monomer type by one-letter code.""" |
me@260
|
74 return cls.by_code1[code1.upper()] |
me@260
|
75 |
me@260
|
76 @classmethod |
me@260
|
77 def from_code3(cls, code3): |
me@260
|
78 """Return monomer type by three-letter code.""" |
me@260
|
79 return cls.by_code3[code3.upper()] |
me@260
|
80 |
me@260
|
81 @classmethod |
me@260
|
82 def from_name(cls, name): |
me@260
|
83 """Return monomer type by name.""" |
me@260
|
84 return cls.by_name[name.capitalize()] |
me@260
|
85 |
me@260
|
86 def instance(self): |
me@260
|
87 """Create a new monomer of given type.""" |
me@260
|
88 return self.instance_type(self) |
me@260
|
89 |
me@260
|
90 def __eq__(self, other): |
me@260
|
91 if hasattr(other, "type"): |
me@260
|
92 return self is other.type |
me@260
|
93 return self is other |
me@260
|
94 |
me@260
|
95 class Monomer(object): |
me@260
|
96 """Monomer object. |
me@260
|
97 |
me@260
|
98 attributes: |
me@260
|
99 |
me@260
|
100 - `type`: type of monomer (a MonomerType object) |
me@260
|
101 |
me@260
|
102 class attribute `monomer_type` is MonomerType or either of it's subclasses, |
me@260
|
103 it is used when creating new monomers. It MUST be redefined when subclassing Monomer. |
me@260
|
104 """ |
me@260
|
105 monomer_type = MonomerType |
me@260
|
106 |
me@260
|
107 def __init__(self, type): |
me@260
|
108 self.type = type |
me@260
|
109 |
me@260
|
110 @classmethod |
me@260
|
111 def from_code1(cls, code1): |
me@260
|
112 return cls(cls.monomer_type.by_code1[code1.upper()]) |
me@260
|
113 |
me@260
|
114 @classmethod |
me@260
|
115 def from_code3(cls, code3): |
me@260
|
116 return cls(cls.monomer_type.by_code3[code3.upper()]) |
me@260
|
117 |
me@260
|
118 @classmethod |
me@260
|
119 def from_name(cls, name): |
me@260
|
120 return cls(cls.monomer_type.by_name[name.capitalize()]) |
me@260
|
121 |
me@260
|
122 def __eq__(self, other): |
me@260
|
123 if hasattr(other, "type"): |
me@260
|
124 return self.type is other.type |
me@260
|
125 return self.type is other |
bnagaev@239
|
126 |
bnagaev@239
|
127 class Sequence(list): |
me@274
|
128 """Sequence of Monomers. |
bnagaev@243
|
129 |
me@274
|
130 This behaves like list of monomer objects. In addition to standard list |
me@274
|
131 behaviour, Sequence has the following attributes: |
me@270
|
132 |
me@274
|
133 * name -- str with the name of the sequence |
me@274
|
134 * description -- str with description of the sequence |
me@274
|
135 * source -- str denoting source of the sequence |
me@266
|
136 |
me@274
|
137 Any of them may be empty (i.e. hold empty string) |
me@274
|
138 """ |
me@270
|
139 |
me@262
|
140 def __init__(self, monomers=None, name='', description=""): |
me@262
|
141 if not monomers: |
me@262
|
142 monomers = [] |
me@262
|
143 self.name = name |
me@262
|
144 self.description = description |
me@270
|
145 self.monomers = monomers |
me@270
|
146 |
me@262
|
147 def __len__(self): |
me@262
|
148 return len(self.monomers) |
me@270
|
149 |
me@262
|
150 def __str__(self): |
me@262
|
151 """ Returns sequence in one-letter code """ |
me@262
|
152 return ''.join([monomer.type.code1 for monomer in self.monomers]) |
me@270
|
153 |
me@262
|
154 def __eq__(self, other): |
me@262
|
155 """ Returns if all corresponding monomers of this sequences are equal |
me@270
|
156 |
me@262
|
157 If lengths of sequences are not equal, returns False |
me@270
|
158 """ |
me@262
|
159 return len(self) == len(other) and \ |
me@262
|
160 all([a==b for a, b in zip(self.monomers, other.monomers)]) |
me@270
|
161 |
me@262
|
162 def __ne__(self, other): |
me@262
|
163 return not (self == other) |
me@270
|
164 |
me@273
|
165 @classmethod |
me@273
|
166 def from_string(cls, string, name='', description=''): |
me@273
|
167 """Create sequences from string of one-letter codes.""" |
me@273
|
168 monomer = cls.monomer_type.from_code1 |
me@273
|
169 monomers = [monomer(letter) for letter in string] |
me@273
|
170 return cls(monomers, name, description) |
me@262
|
171 |
me@262
|
172 def secstr_has(self, chain, monomer): |
me@262
|
173 return chain in self.pdb_secstr and monomer in self.pdb_secstr[chain] |
me@262
|
174 |
me@262
|
175 @staticmethod |
me@262
|
176 def file_slice(file, n_from, n_to, fasta_name='', name='', description='', monomer_kind=AminoAcidType): |
me@270
|
177 """ Build and return sequence, consisting of part of sequence from file |
me@262
|
178 |
me@262
|
179 Does not control gaps |
me@262
|
180 """ |
me@262
|
181 inside = False |
me@262
|
182 number_used = 0 |
me@262
|
183 s = '' |
me@262
|
184 for line in file: |
me@262
|
185 line = line.split() |
me@262
|
186 if not inside: |
me@262
|
187 if line.startswith('>%s' % fasta_name): |
me@262
|
188 inside = True |
me@262
|
189 else: |
me@262
|
190 n = len(line) |
me@262
|
191 s += line[(n_from - number_user):(n_to - number_user)] |
me@262
|
192 return Sequence.from_str(s, name, description, monomer_kind) |
bnagaev@243
|
193 |
bnagaev@249
|
194 class Alignment(dict): |
bnagaev@249
|
195 """ Alignment |
me@270
|
196 |
bnagaev@249
|
197 {<Sequence object>:[<Monomer object>,None,<Monomer object>]} |
me@266
|
198 |
bnagaev@249
|
199 keys are the Sequence objects, values are the lists, which |
bnagaev@249
|
200 contain monomers of those sequences or None for gaps in the |
bnagaev@249
|
201 corresponding sequence of alignment |
bnagaev@249
|
202 """ |
bnagaev@249
|
203 # _sequences -- list of Sequence objects. Sequences don't contain gaps |
bnagaev@249
|
204 # - see sequence.py module |
bnagaev@249
|
205 |
bnagaev@249
|
206 def __init__(self, *args): |
bnagaev@249
|
207 """overloaded constructor |
bnagaev@249
|
208 |
bnagaev@249
|
209 Alignment() -> new empty Alignment |
bnagaev@249
|
210 Alignment(sequences, body) -> new Alignment with sequences and |
bnagaev@249
|
211 body initialized from arguments |
bnagaev@249
|
212 Alignment(fasta_file) -> new Alignment, read body and sequences |
me@270
|
213 from fasta file |
bnagaev@249
|
214 |
bnagaev@249
|
215 """ |
bnagaev@249
|
216 if len(args)>1:#overloaded constructor |
bnagaev@249
|
217 self.sequences=args[0] |
bnagaev@249
|
218 self.body=args[1] |
bnagaev@249
|
219 elif len(args)==0: |
bnagaev@249
|
220 self.sequences=[] |
bnagaev@249
|
221 self.body={} |
bnagaev@249
|
222 else: |
bnagaev@249
|
223 self.sequences, self.body = Alignment.from_fasta(args[0]) |
bnagaev@249
|
224 |
bnagaev@249
|
225 def length(self): |
bnagaev@249
|
226 """ Returns width, ie length of each sequence with gaps """ |
bnagaev@249
|
227 return max([len(line) for line in self.body.values()]) |
bnagaev@249
|
228 |
bnagaev@249
|
229 def height(self): |
bnagaev@249
|
230 """ The number of sequences in alignment (it's thickness). """ |
bnagaev@249
|
231 return len(self.body) |
bnagaev@249
|
232 |
bnagaev@249
|
233 def identity(self): |
bnagaev@249
|
234 """ Calculate the identity of alignment positions for colouring. |
bnagaev@249
|
235 |
bnagaev@249
|
236 For every (row, column) in alignment the percentage of the exactly |
bnagaev@249
|
237 same residue in the same column in the alignment is calculated. |
me@270
|
238 The data structure is just like the Alignment.body, but istead of |
bnagaev@249
|
239 monomers it contains float percentages. |
bnagaev@249
|
240 """ |
bnagaev@249
|
241 # Oh, God, that's awful! Absolutely not understandable. |
bnagaev@249
|
242 # First, calculate percentages of amino acids in every column |
bnagaev@249
|
243 contribution = 1.0 / len(self.sequences) |
bnagaev@249
|
244 all_columns = [] |
bnagaev@249
|
245 for position in range(len(self)): |
bnagaev@249
|
246 column_percentage = {} |
bnagaev@249
|
247 for seq in self.body: |
bnagaev@249
|
248 if self.body[seq][position] is not None: |
bnagaev@249
|
249 aa = self.body[seq][position].code |
bnagaev@249
|
250 else: |
bnagaev@249
|
251 aa = None |
bnagaev@249
|
252 if aa in allpy.data.amino_acids: |
bnagaev@249
|
253 if aa in column_percentage.keys(): |
bnagaev@249
|
254 column_percentage[aa] += contribution |
bnagaev@249
|
255 else: |
bnagaev@249
|
256 column_percentage[aa] = contribution |
bnagaev@249
|
257 all_columns.append(column_percentage) |
bnagaev@249
|
258 # Second, map these percentages onto the alignment |
bnagaev@249
|
259 self.identity_percentages = {} |
bnagaev@249
|
260 for seq in self.sequences: |
bnagaev@249
|
261 self.identity_percentages[seq] = [] |
bnagaev@249
|
262 for seq in self.identity_percentages: |
bnagaev@249
|
263 line = self.identity_percentages[seq] |
bnagaev@249
|
264 for position in range(len(self)): |
bnagaev@249
|
265 if self.body[seq][position] is not None: |
bnagaev@249
|
266 aa = self.body[seq][position].code |
bnagaev@249
|
267 else: |
bnagaev@249
|
268 aa = None |
bnagaev@249
|
269 line.append(all_columns[position].get(aa)) |
bnagaev@249
|
270 return self.identity_percentages |
bnagaev@249
|
271 |
bnagaev@249
|
272 @staticmethod |
bnagaev@249
|
273 def from_fasta(file, monomer_kind=AminoAcidType): |
bnagaev@249
|
274 """ Import data from fasta file |
me@270
|
275 |
bnagaev@249
|
276 monomer_kind is class, inherited from MonomerType |
me@270
|
277 |
bnagaev@249
|
278 >>> import alignment |
me@270
|
279 >>> sequences,body=alignment.Alignment.from_fasta(open("test.fasta")) |
bnagaev@249
|
280 """ |
bnagaev@249
|
281 import re |
bnagaev@249
|
282 |
bnagaev@249
|
283 sequences = [] |
bnagaev@249
|
284 body = {} |
bnagaev@249
|
285 |
bnagaev@249
|
286 raw_sequences = file.read().split(">") |
bnagaev@249
|
287 if len(raw_sequences) <= 1: |
bnagaev@249
|
288 raise Exception("Wrong format of fasta-file %s" % file.name) |
me@270
|
289 |
bnagaev@249
|
290 raw_sequences = raw_sequences[1:] #ignore everything before the first > |
bnagaev@249
|
291 for raw in raw_sequences: |
bnagaev@249
|
292 parsed_raw_sequence = raw.split("\n") |
bnagaev@249
|
293 parsed_raw_sequence = [s.strip() for s in parsed_raw_sequence] |
bnagaev@249
|
294 name_and_description = parsed_raw_sequence[0] |
bnagaev@249
|
295 name_and_description = name_and_description.split(" ",1) |
bnagaev@249
|
296 if len(name_and_description) == 2: |
bnagaev@249
|
297 name, description = name_and_description |
me@270
|
298 elif len(name_and_description) == 1: |
bnagaev@249
|
299 #if there is description |
bnagaev@249
|
300 name = name_and_description[0] |
bnagaev@249
|
301 description = '' |
bnagaev@249
|
302 else: |
bnagaev@249
|
303 raise Exception("Wrong name of sequence %(name)$ fasta-file %(file)s" % \ |
bnagaev@249
|
304 {'name': name, 'file': file.name}) |
me@270
|
305 |
bnagaev@249
|
306 if len(parsed_raw_sequence) <= 1: |
bnagaev@249
|
307 raise Exception("Wrong format of sequence %(name)$ fasta-file %(file)s" % \ |
bnagaev@249
|
308 {'name': name, 'file': file.name}) |
bnagaev@249
|
309 string = "" |
bnagaev@249
|
310 for piece in parsed_raw_sequence[1:]: |
bnagaev@249
|
311 piece_without_whitespace_chars = re.sub("\s", "", piece) |
bnagaev@249
|
312 string += piece_without_whitespace_chars |
bnagaev@249
|
313 monomers = [] #convert into Monomer objects |
bnagaev@249
|
314 body_list = [] #create the respective list in body dict |
bnagaev@249
|
315 for current_monomer in string: |
bnagaev@249
|
316 if current_monomer not in ["-", ".", "~"]: |
bnagaev@249
|
317 monomers.append(monomer_kind.from_code1(current_monomer).instance()) |
bnagaev@249
|
318 body_list.append(monomers[-1]) |
bnagaev@249
|
319 else: |
bnagaev@249
|
320 body_list.append(None) |
bnagaev@249
|
321 s = sequence.Sequence(monomers, name, description) |
bnagaev@249
|
322 sequences.append(s) |
bnagaev@249
|
323 body[s] = body_list |
bnagaev@249
|
324 return sequences, body |
me@270
|
325 |
bnagaev@249
|
326 @staticmethod |
bnagaev@249
|
327 def from_sequences(*sequences): |
bnagaev@249
|
328 """ Constructs new alignment from sequences |
me@270
|
329 |
me@270
|
330 Add None's to right end to make equal lengthes of alignment sequences |
bnagaev@249
|
331 """ |
bnagaev@249
|
332 alignment = Alignment() |
bnagaev@249
|
333 alignment.sequences = sequences |
bnagaev@249
|
334 max_length = max(len(sequence) for sequence in sequences) |
bnagaev@249
|
335 for sequence in sequences: |
bnagaev@249
|
336 gaps_count = max_length - len(sequence) |
bnagaev@249
|
337 alignment.body[sequence] = sequence.monomers + [None] * gaps_count |
bnagaev@249
|
338 return alignment |
me@270
|
339 |
bnagaev@249
|
340 def save_fasta(self, out_file, long_line=70, gap='-'): |
bnagaev@249
|
341 """ Saves alignment to given file |
me@270
|
342 |
bnagaev@249
|
343 Splits long lines to substrings of length=long_line |
me@270
|
344 To prevent this, set long_line=None |
bnagaev@249
|
345 """ |
bnagaev@249
|
346 block.Block(self).save_fasta(out_file, long_line=long_line, gap=gap) |
me@270
|
347 |
bnagaev@249
|
348 def muscle_align(self): |
bnagaev@249
|
349 """ Simple align ths alignment using sequences (muscle) |
me@270
|
350 |
bnagaev@249
|
351 uses old Monomers and Sequences objects |
bnagaev@249
|
352 """ |
bnagaev@249
|
353 tmp_file = NamedTemporaryFile(delete=False) |
bnagaev@249
|
354 self.save_fasta(tmp_file) |
bnagaev@249
|
355 tmp_file.close() |
bnagaev@249
|
356 os.system("muscle -in %(tmp)s -out %(tmp)s" % {'tmp': tmp_file.name}) |
bnagaev@249
|
357 sequences, body = Alignment.from_fasta(open(tmp_file.name)) |
bnagaev@249
|
358 for sequence in self.sequences: |
bnagaev@249
|
359 try: |
bnagaev@249
|
360 new_sequence = [i for i in sequences if sequence==i][0] |
bnagaev@249
|
361 except: |
bnagaev@249
|
362 raise Exception("Align: Cann't find sequence %s in muscle output" % \ |
bnagaev@249
|
363 sequence.name) |
bnagaev@249
|
364 old_monomers = iter(sequence.monomers) |
bnagaev@249
|
365 self.body[sequence] = [] |
bnagaev@249
|
366 for monomer in body[new_sequence]: |
bnagaev@249
|
367 if not monomer: |
bnagaev@249
|
368 self.body[sequence].append(monomer) |
bnagaev@249
|
369 else: |
bnagaev@249
|
370 old_monomer = old_monomers.next() |
bnagaev@249
|
371 if monomer != old_monomer: |
bnagaev@249
|
372 raise Exception("Align: alignment errors") |
bnagaev@249
|
373 self.body[sequence].append(old_monomer) |
bnagaev@249
|
374 os.unlink(tmp_file.name) |
me@270
|
375 |
bnagaev@249
|
376 def column(self, sequence=None, sequences=None, original=None): |
bnagaev@249
|
377 """ returns list of columns of alignment |
me@270
|
378 |
bnagaev@249
|
379 sequence or sequences: |
bnagaev@249
|
380 if sequence is given, then column is (original_monomer, monomer) |
me@270
|
381 if sequences is given, then column is (original_monomer, {sequence: monomer}) |
bnagaev@249
|
382 if both of them are given, it is an error |
bnagaev@249
|
383 original (Sequence type): |
bnagaev@249
|
384 if given, this filters only columns represented by original sequence |
bnagaev@249
|
385 """ |
bnagaev@249
|
386 if sequence and sequences: |
bnagaev@249
|
387 raise Exception("Wrong usage. read help") |
bnagaev@249
|
388 indexes = dict([(v, k) for( k, v) in enumerate(self.sequences)]) |
bnagaev@249
|
389 alignment = self.body.items() |
bnagaev@249
|
390 alignment.sort(key=lambda i: indexes[i[0]]) |
bnagaev@249
|
391 alignment = [monomers for seq, monomers in alignment] |
bnagaev@249
|
392 for column in zip(*alignment): |
bnagaev@249
|
393 if not original or column[indexes[original]]: |
bnagaev@249
|
394 if sequence: |
bnagaev@249
|
395 yield (column[indexes[original]], column[indexes[sequence]]) |
bnagaev@249
|
396 else: |
me@270
|
397 yield (column[indexes[original]], |
bnagaev@249
|
398 dict([(s, column[indexes[s]]) for s in sequences])) |
me@270
|
399 |
bnagaev@249
|
400 def secstr(self, sequence, pdb_chain, gap='-'): |
bnagaev@249
|
401 """ Returns string representing secondary structure """ |
bnagaev@249
|
402 return ''.join([ |
me@270
|
403 (sequence.pdb_secstr[pdb_chain][m] if sequence.secstr_has(pdb_chain, m) else gap) |
bnagaev@249
|
404 for m in self.body[sequence]]) |
bnagaev@249
|
405 |
bnagaev@249
|
406 class Block(object): |
me@261
|
407 """ Block of alignment |
me@270
|
408 |
me@261
|
409 Mandatory data: |
me@266
|
410 |
me@261
|
411 * self.alignment -- alignment object, which the block belongs to |
me@261
|
412 * self.sequences - set of sequence objects that contain monomers |
me@261
|
413 and/or gaps, that constitute the block |
me@261
|
414 * self.positions -- list of positions of the alignment.body that |
me@261
|
415 are included in the block; position[i+1] is always to the right from position[i] |
me@270
|
416 |
me@261
|
417 Don't change self.sequences -- it may be a link to other block.sequences |
me@270
|
418 |
me@261
|
419 How to create a new block: |
me@261
|
420 >>> import alignment |
me@261
|
421 >>> import block |
me@261
|
422 >>> proj = alignment.Alignment(open("test.fasta")) |
me@261
|
423 >>> block1 = block.Block(proj) |
me@261
|
424 """ |
me@270
|
425 |
me@261
|
426 def __init__(self, alignment, sequences=None, positions=None): |
me@261
|
427 """ Builds new block from alignment |
me@270
|
428 |
me@261
|
429 if sequences==None, all sequences are used |
me@261
|
430 if positions==None, all positions are used |
me@261
|
431 """ |
me@261
|
432 if sequences == None: |
me@261
|
433 sequences = set(alignment.sequences) # copy |
me@261
|
434 if positions == None: |
me@261
|
435 positions = range(len(alignment)) |
me@261
|
436 self.alignment = alignment |
me@261
|
437 self.sequences = sequences |
me@261
|
438 self.positions = positions |
me@270
|
439 |
me@261
|
440 def save_fasta(self, out_file, long_line=70, gap='-'): |
me@270
|
441 """ Saves alignment to given file in fasta-format |
me@270
|
442 |
me@261
|
443 No changes in the names, descriptions or order of the sequences |
me@261
|
444 are made. |
me@261
|
445 """ |
me@261
|
446 for sequence in self.sequences: |
me@261
|
447 alignment_monomers = self.alignment.body[sequence] |
me@261
|
448 block_monomers = [alignment_monomers[i] for i in self.positions] |
me@261
|
449 string = ''.join([m.type.code1 if m else '-' for m in block_monomers]) |
me@261
|
450 save_fasta(out_file, string, sequence.name, sequence.description, long_line) |
me@270
|
451 |
me@270
|
452 def geometrical_cores(self, max_delta=config.delta, |
me@270
|
453 timeout=config.timeout, minsize=config.minsize, |
me@261
|
454 ac_new_atoms=config.ac_new_atoms, |
me@261
|
455 ac_count=config.ac_count): |
me@261
|
456 """ Returns length-sorted list of blocks, representing GCs |
me@270
|
457 |
me@261
|
458 max_delta -- threshold of distance spreading |
me@261
|
459 timeout -- Bron-Kerbosh timeout (then fast O(n ln n) algorithm) |
me@261
|
460 minsize -- min size of each core |
me@261
|
461 ac_new_atoms -- min part or new atoms in new alternative core |
me@261
|
462 current GC is compared with each of already selected GCs |
me@261
|
463 if difference is less then ac_new_atoms, current GC is skipped |
me@261
|
464 difference = part of new atoms in current core |
me@261
|
465 ac_count -- max number of cores (including main core) |
me@261
|
466 -1 means infinity |
me@261
|
467 If more than one pdb chain for some sequence provided, consider all of them |
me@270
|
468 cost is calculated as 1 / (delta + 1) |
me@261
|
469 delta in [0, +inf) => cost in (0, 1] |
me@261
|
470 """ |
me@261
|
471 nodes = self.positions |
me@261
|
472 lines = {} |
me@261
|
473 for i in self.positions: |
me@261
|
474 for j in self.positions: |
me@261
|
475 if i < j: |
me@261
|
476 distances = [] |
me@261
|
477 for sequence in self.sequences: |
me@261
|
478 for chain in sequence.pdb_chains: |
me@261
|
479 m1 = self.alignment.body[sequence][i] |
me@261
|
480 m2 = self.alignment.body[sequence][j] |
me@261
|
481 if m1 and m2: |
me@261
|
482 r1 = sequence.pdb_residues[chain][m1] |
me@261
|
483 r2 = sequence.pdb_residues[chain][m2] |
me@261
|
484 ca1 = r1['CA'] |
me@261
|
485 ca2 = r2['CA'] |
me@261
|
486 d = ca1 - ca2 # Bio.PDB feature |
me@261
|
487 distances.append(d) |
me@261
|
488 if len(distances) >= 2: |
me@261
|
489 delta = max(distances) - min(distances) |
me@261
|
490 if delta <= max_delta: |
me@261
|
491 lines[Graph.line(i, j)] = 1.0 / (1.0 + max_delta) |
me@261
|
492 graph = Graph(nodes, lines) |
me@261
|
493 cliques = graph.cliques(timeout=timeout, minsize=minsize) |
me@261
|
494 GCs = [] |
me@261
|
495 for clique in cliques: |
me@261
|
496 for GC in GCs: |
me@261
|
497 if len(clique - set(GC.positions)) < ac_new_atoms * len(clique): |
me@261
|
498 break |
me@261
|
499 else: |
me@261
|
500 GCs.append(Block(self.alignment, self.sequences, clique)) |
me@261
|
501 if ac_count != -1 and len(GCs) >= ac_count: |
me@261
|
502 break |
me@261
|
503 return GCs |
me@270
|
504 |
me@261
|
505 def xstring(self, x='X', gap='-'): |
me@261
|
506 """ Returns string consisting of gap chars and chars x at self.positions |
me@270
|
507 |
me@261
|
508 Length of returning string = length of alignment |
me@261
|
509 """ |
me@261
|
510 monomers = [False] * len(self.alignment) |
me@261
|
511 for i in self.positions: |
me@261
|
512 monomers[i] = True |
me@261
|
513 return ''.join([x if m else gap for m in monomers]) |
me@270
|
514 |
me@261
|
515 def save_xstring(self, out_file, name, description='', x='X', gap='-', long_line=70): |
me@261
|
516 """ Save xstring and name in fasta format """ |
me@261
|
517 save_fasta(out_file, self.xstring(x=x, gap=gap), name, description, long_line) |
me@270
|
518 |
me@261
|
519 def monomers(self, sequence): |
me@261
|
520 """ Iterates monomers of this sequence from this block """ |
me@261
|
521 alignment_sequence = self.alignment.body[sequence] |
me@261
|
522 return (alignment_sequence[i] for i in self.positions) |
me@270
|
523 |
me@261
|
524 def ca_atoms(self, sequence, pdb_chain): |
me@261
|
525 """ Iterates Ca-atom of monomers of this sequence from this block """ |
me@261
|
526 return (sequence.pdb_residues[pdb_chain][monomer] for monomer in self.monomers()) |
me@270
|
527 |
me@261
|
528 def sequences_chains(self): |
me@261
|
529 """ Iterates pairs (sequence, chain) """ |
me@261
|
530 for sequence in self.alignment.sequences: |
me@261
|
531 if sequence in self.sequences: |
me@261
|
532 for chain in sequence.pdb_chains: |
me@261
|
533 yield (sequence, chain) |
me@270
|
534 |
me@261
|
535 def superimpose(self): |
me@261
|
536 """ Superimpose all pdb_chains in this block """ |
me@261
|
537 sequences_chains = list(self.sequences_chains()) |
me@261
|
538 if len(sequences_chains) >= 1: |
me@261
|
539 sup = Superimposer() |
me@261
|
540 fixed_sequence, fixed_chain = sequences_chains.pop() |
me@261
|
541 fixed_atoms = self.ca_atoms(fixed_sequence, fixed_chain) |
me@261
|
542 for sequence, chain in sequences_chains: |
me@261
|
543 moving_atoms = self.ca_atoms(sequence, chain) |
me@261
|
544 sup.set_atoms(fixed_atoms, moving_atoms) |
me@261
|
545 # Apply rotation/translation to the moving atoms |
me@261
|
546 sup.apply(moving_atoms) |
me@270
|
547 |
me@261
|
548 def pdb_save(self, out_file): |
me@270
|
549 """ Save all sequences |
me@270
|
550 |
me@261
|
551 Returns {(sequence, chain): CHAIN} |
me@261
|
552 CHAIN is chain letter in new file |
me@261
|
553 """ |
me@261
|
554 tmp_file = NamedTemporaryFile(delete=False) |
me@261
|
555 tmp_file.close() |
me@270
|
556 |
me@261
|
557 for sequence, chain in self.sequences_chains(): |
me@261
|
558 sequence.pdb_save(tmp_file.name, chain) |
me@261
|
559 # TODO: read from tmp_file.name |
me@261
|
560 # change CHAIN |
me@261
|
561 # add to out_file |
me@270
|
562 |
me@261
|
563 os.unlink(NamedTemporaryFile) |
bnagaev@239
|
564 |
me@260
|
565 # vim: set ts=4 sts=4 sw=4 et: |