|
|
Электронная библиотека Попечительского совета механико-математического факультета Московского государственного университета
|
|
|
|
 |
|
| Gorenstein D., Lyons R., Solomon R. - The Classification of the Finite Simple Groups |
|
|
 |
| Предметный указатель |
-balance 125
101
, 60 100
101
101
101
(central extension) 101
6 8
, , , 7 8
, 7 8 10
-property 24 28 40-41 62 123 127
-property, partial 30 36 42 64
24
7 8
63
22
14
139
, , 9 11
, , , , 7 8 10
, , , 7 8 10
14
17
, , , 9 11
, , 7 8 10
, , 9 11
6
7
109-121
, of Lie type of large Lie rank 116 121
, of Lie type of small Lie rank, of characteristic 2 95-96 115
, of Lie type of small Lie rank, of characteristic 2 and Lie rank 1 95-96
, of Lie type of small Lie rank, of odd characteristic 110 112 113
, sporadic 109
, , 121
, , 109 114
27
66 121
, 7 8 10
, 71
, , , 9 11
-type 104
-type 105
-uniqueness subgroup 94
-type 104
-balance 127
-balance 127-128
6 8
8
-generic type 57-58
-special type, -special type 58 103
-balance 21 127-128
-balance, analogue for near components 96
-balance, analogue for two primes 134
20
127
123
30 81
, , , , 9 11
135
19
139
, , 19
24
6 8
7 8
7 8
, , 7 8 101
6
7
8 10
8
-neighborhood 117
6 8
(central extension) 101
, , , , , , , 4-5
101
, , 139
64 124
, 132
66
82
82
21
6
130
81
, -group 60 104
116
101
, 81
102
, -group 100
-groups 54 57 81 99-101
-groups as pumpups 101-102
, -group 100
-groups 95 100
, 139
, 124
95
102
-groups 57-58 63 103
, , 101
139
, 55 103
55 81
, , 102
53 81
-group 12
-proper 12
110
, i=0,...,7 86
53 81
-type 104
7
139
53 81
126
55 103
, 58. 60 82
65
, 97
98
, 94
102
-groups 57 102-103 129
-groups as pumpups 101-103
, 88
26
-type 117
18
32
, 19
-subgroup 25
37 82
107
58 83
120
118
90
97
, , 32
6
, , , , 30 124-125
(B, N)-pair 34
(B, N)-pair, split 34
(B, N)-pair, split, recognition of rank 1 36-37 39 49 50 63 113 138
(B, N)-pair, split, recognition of rank 2 37 63 111 113 115 137-138
(B,N)-pair, split (B,N)-pair 34
(y, I)-neighborhood 65
| 2-amalgam -type 115
2-amalgam type, 2-amalgam type 114-115
2-central -type 111
2-central involution 88
2-local p-rank 135
2-maximal -type mod cores 111
2-terminal -type 110
2-terminal -type 114
2-uniqueness subgroup 82
3/2-balance 64
3/2-balanced functor 43 64-65
3/2-balanced type 120
A-composition factor, length, series 13
Algebraic automorphism 118 121
Almost p-constrained p-component preuniqueness subgroup 93
Almost simple group 18
Almost strongly p-embedded subgroup 94 (see also 'Uniqueness subgroups')
Alperin, J. 39 41
Alternating group 6 32 36
Alternating group as , or -group 103
Amalgam method 5-6 26 39 41 43 60-61 105 131-133
Amalgam method, associated graph 132-133
Amalgam method: , , , , 131-132
Artin, E. 11
Aschbacher -block 39 41 53
Aschbacher, M. 18 30 37 39-43 45-48 50 53 89 99 125 129 130
Associated -balanced functor 125
Associated module of a near component 96
Atlas of Finite Groups 45 50 139
Background references 47-50 140
Background results 59 63 79 87 104 118
Background Results, Background References 44-50
Background results, listed 44-50
Balance, k-balance see 'Group' (also see 'Signalizer functor')
Bar convention 18 139
Base of a neighborhood 119
Baumann, B. 39 131
Bender method 30 38 43 60 62 104 110 123 134
Bender, H. 16-17 48-50 123
Blackburn, N. 46 47
Bombieri, E. 49
Borel subgroup 34
Borel, A. 25
Brauer - Suzuki theory of exceptional characters 38 135
Brauer, R. 51
Brauer, theory of blocks 38 46 50 62
Brauer, theory of blocks, defect groups of 2-rank at most 3 50
Bruhat decomposition: B, H, N, R, U, V, , W, , 33 34
Building 34 73 138
Burnside, W. 29-30
C(G,S) 90
C(K,x) 22
Cartan subgroup 33
Carter, R. 45 47
Centralizer of element of odd prime order p 35 41 42 51 54-56
Centralizer of element of prime order p 108
Centralizer of involution 11 27ff. 35 39 41-43 51 52 54 61-62
Centralizer of involution pattern 46 59 77 109-110
Centralizer of semisimple element 51 54-56
Character theory 31 46 50 60 62 104 108 135-137
Character theory, ordinary vs. modular 50
Characteristic 2-core 90
Characteristic p-type 25
Characteristic power 136
Characteristic subgroup 16
Chevalley commutator formula 32-33
Chevalley group 7
Chevalley groups see 'Groups of Lie type'
Chevalley, C. 3
Chief factor, series 13-14
Classical group 6
Classical groups 6ff. (see also 'Groups of Lie type')
Classification Grid 79 83 85 99-121
Classification Theorem see 'Theorems'
Classification Theorem, Theorems 104-106
Component 17 51 81
Component, solvable 51 67 109
Component, standard 53 91-92
Component, terminal 23 42 53 81 90-92 108
Composition factor, A-composition factor, length, series 13
Composition factor, length, series 12
Computer 35 45 68
Control of (strong) G-fusion (in T) 87
Control of 2-locals 129
Control of fusion 87 122
Control of rank 1 (or rank 2) fusion 91
Control of rank 1 or 2 fusion 91-92
Conway, J. 11
Core 20 (see also 'p'-core')
Core, elimination 40 43 60 110-111
Covering group 16
Covering group, notation for 101
Covering group, universal 17 33
Curtis, C. 35
Das, K. M. 35 71
Delgado, A. 37
Dickson, L. 7
Dieudonne, J. 47
Double transitivity of Suzuki type 95-96
Doubly transitive -type 112
Doubly transitive of Suzuki type 95-96
E(X) 17
Enguehard, M. 49-50
Even type 55 81
Expository references 47 141-146
Extremal conjugation 122
F(X) 16
Failure of factorization module 26
Feit, W. 46 47 48 107-108
Finkelstein, L. 35
Fischer, B. 11 39-40
Fischer, transpositions 11 39
Fitting length, series 19
Fitting subgroup 16
Fitting subgroup, generalized Fitting subgroup 17 123
Foote, R. 5 38 53 98
Four-group 39
Frattini subgroup 18
Frobenius group 107
Frobenius, G. 29
Frohardt, D. 35
Fusion 29 60 62 63 104 120 122
Fusion, extremal conjugation 122
G(q), 32-33
General local group theory 45-48
Generalized Fitting subgroup 17 123
Generic even type 106
Generic odd type 106
Generic, generic type 58 106
Geometry associated with a finite group 35 73-74
Gilman, R. 35 39 41
Glauberman, G. 21 38 39 48-50 124 130
Goldschmidt, D. 39 43 49 125
Gomi, K. 37
Gorenstein, D. 29 38 39 41 46 47-50 99 124 126 127
Griess, R. L. 17 35 41 45
Group of Lie type see 'Groups of Lie type'
Group order formulas 50 135-137
Group, -proper 12 21
Group, almost simple 18
Group, alternating see 'Alternating group'
Group, covering 16
Group, covering, notation for 101
Group, covering, universal 17 33
Group, k-balanced 124-125 129
Group, k-balanced, -balanced 125 129
Group, k-balanced, locally balanced 128
Group, k-balanced, locally k-balanced, -balanced 126
Group, k-balanced, weakly k-balanced, weakly locally k-balanced 124 126
Group, nilpotent 15-16
|
|
 |
| Реклама |
 |
|
|
 |
 |
|