| 
    
        |  | Электронная библиотека Попечительского совета механико-математического факультета
 Московского государственного университета
 |  |    
    
	    
	    |  |  | 
		|  |  
                    | Back T., Fogel D.B., Michalewicz Z. - Evolutionary computation (Vol. 2. Advanced algorithms and operators) |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Absorption time      145 Adaptation      170 182
 Adaptive control      185
 Adaptive landscape      102 103
 Adaptive parameter control      180 189
 Adaptive techniques, recombination operators      160-164
 Adaptive value      102
 AIC (Akaike information criterion)      15 16
 Akaike information criterion (AIC)      15 16
 ALECSYS      258
 Artificial intelligence (AI)      38
 Artificial Neural Networks      see "Neural networks"
 Asymptotics      247
 Baldwin effect      56
 Base pair mutations of Eschericia coli      144
 Base-level EAs      213 214
 Behavioral memory approach      71
 Bias      154 155
 Biased continuous competition pattern      234
 Binary decision diagram (BDD)      261
 Binary representation      149
 Binary search spaces      206 207
 binary strings      4 5
 Binary variables, coding      9
 Binary vectors      see "Binary strings"
 Binary-string encodings      45
 Bipartite competitive fitness pattern      228
 Bit strings      see "Binary strings"
 Building block hypothesis (BBH)      164
 Cauchy density function      197
 Chromosomes      111 178
 Classification application      231
 Classification rules      18
 Classifier systems (CFS)      161
 Classifier systems (CFS), hardware      257 258
 Coarse-grained PGAs      253
 Coevolution, definition      224
 Coevolutionary algorithms      224-238
 Coevolutionary genetic algorithm (CGA)      228-234
 Coevolutionary genetic algorithm (CGA), applications      231-234
 Coevolutionary genetic algorithm (CGA), future research      236
 Coevolutionary model      70 71
 Coevolutionary, introduction in EAs      224
 Coevolving sorting networks      227 228
 Comma-selection      146
 Communication topology      105 106
 Competition pattern      225
 Competitive evolution      220
 Competitive fitness      12-14 225-227
 Complexity-based fitness evaluation      15-24
 Computation time, evolutionary algorithms (EAs)      247-252
 Computation time, mutation operators      250
 Computation time, recombination operators      251
 Computation time, selection operators      247-250
 Conceptualization      102
 Connection Machine (CM)      257
 Constrained optimization problems (COPs)      75 76 77
 Constraint satisfaction      232
 Constraint-handling methods      69-74
 Constraint-handling techniques introduction      38-40 see
 Constraint-preserving operators      62-68
 Constraint-satisfaction problems (CSPs)      38 75-86
 Constraint-satisfaction problems (CSPs), changing the search space      81
 Constraint-satisfaction problems (CSPs), solving the transformed problem      82 83
 Constraint-satisfaction problems (CSPs), transforming to constrained optimization problem      80
 Constraint-satisfaction problems (CSPs), transforming to evolutionary-algorithm-suited problems      77
 Constraint-satisfaction problems (CSPs), transforming to free optimization problem      78
 Control level parallelism      254
 Control problems, coding      9 10
 Convergence velocity      143 145
 Cooperative coevolutionary genetic algorithms (CCGAs)      235
 Correlated mutations      143
 Cost assignment strategy      26
 Covariances      180
 Cross-validation      17
 Crossover      178
 Crossover operators      111 219
 Crossover, one-point      181
 Crossover, uniform      181
 Crowding techniques      89 90 219
 Cultural algorithms      71 72
 Cut points      153
 Data level parallelism      254
 Decision trees      18 19
 Decoders      49-55
 Decoders, examples      58-61
 Decoders, formal description      50-55
 Decoders, selection procedure      58 59
 Decoding functions      2 4-11
 Deme attributes      129-131
 Demes      103 104 255
 Density classification      233
 Derived delta      163
 Deterministic crowding      89 90
 Deterministic crowding algorithm      89
 Deterministic evaluations      244
 Deterministic parameter control      179 180
 Diffusion models      107 125-133
 Diffusion models, formal description      125 126
 Diffusion models, implementation techniques      126-131
 Diffusion models, theoretical research      131 132
 Distribution bias      154 155
 Dynamic parameter control      189
 Edge recombination crossover      65
 Eldredge Gould theory      104
 Elitist model      219
 Embryology-oriented approach      261
 Encoding functions      4-11
 Encore      132
 Encounter      229
 Engineering-oriented approach      260
 epochs      106
 Evaluation function      178
 Evolution      174 178
 Evolutionary algorithms (EAs)      174 see
 Evolutionary algorithms (EAs),
  249 Evolutionary algorithms (EAs),
  248 Evolutionary algorithms (EAs), components      179
 Evolutionary algorithms (EAs), computation time      247-252
 Evolutionary algorithms (EAs), dedicated hardware implementations      256-258
 Evolutionary algorithms (EAs), effectiveness      182
 Evolutionary algorithms (EAs), hardware realizations      253-263
 Evolutionary algorithms (EAs), implementation      239-246
 Evolutionary algorithms (EAs), intelligence      184
 Evolutionary programming (EP)      4
 Evolutionary robotics      see also "Robots"
 Evolutionary strategies (ESs)      4 180
 Evolutionary strategies (ESs),
  248 249 Evolvable hardware (EHW)      253 258-261
 Exemplars      see "Taxon-exemplar scheme"
 Exploration power      154
 Fast evolutionary programming      197
 Feasibility condition      77
 Feasibility search space      77
 Feedback      172 175
 Field programmable gate arrays (FPGAs)      256 257 259
 Fine-grained PGAs      256
 Finite-state machines      158 205
 Fitness assignment strategy      30
 Fitness evaluation      1-3 25 26
 Fitness evaluation, competitive      12-14
 Fitness evaluation, complexity-based      15-24
 Fitness evaluation, minimum-description-length-based      17 18
 Fitness evaluation, overview      1 2
 Fitness evaluation, related problems      2
 Fitness landscapes      87
 Fitness proportional selection (FPS)      30 89
 Fitness sharing      32 87-89 235
 Fitness values      152
 Fitness variance of formae      160
 
 | Floating-point coding      7 8 Formae      158 165
 FORTRAN      248
 Free optimization problem (FOP)      76
 Free search space      76
 Fuzzy rules      163
 Gate level evolution      259
 Gaussian mutation      174 176
 Gaussian mutation operator      174
 Generalized Rastrigin function      199
 Genetic algorithms (GAs)      see also "Specific applications"
 Genetic algorithms (GAs) with punctuated equilibria (GAPE)      104
 Genetic algorithms (GAs), design      171
 Genetic drift      31
 GENOCOP III      59 60 73
 Genotypes      81 111
 Genotypic mating restriction      96 97
 Genotypic sharing      88
 Genotypic-level combination      153-156
 Goal attainment method      27 28
 Goal programming      35
 Granularity      101
 Gray code      198 199
 Gray-coded strings      6 7
 Hamming cliffs      157
 Hamming distance      6 147
 Hardware description language (HDL)      259
 Hardware realizations, evolutionary algorithms (EAs)      253-263
 Heapsort      248
 Heuristics      155 156
 Identically distributed (IID) random variables      241
 Implicit parallelism      134
 Inherited delta      163
 Integer search spaces      202-204
 Interior solutions      41
 Intermediary recombination      195
 Internet      132
 Interval schemata      157
 Inverse fitness interaction      224
 Island models      101-124 127
 Island models, influence of parameters on evolution      113-119
 Island models, VLSI circuit design problem      108-113
 Isolation-by-distance model      253
 Iterated prisoner's dilemma (IPD)      226
 Knapsack problem (KP)      49 57 58 147
 Ladder neighborhood      130 131
 Lamarckian evolution      56
 Learning algorithms      94
 Learning rates      189
 Learning rule adaptation      220
 Lexicographic approach      29 30
 Lifetime fitness evaluation (LTFE)      230 234 236
 Linear congruential method      240
 Linkage problem      7
 Lisp      4 158 161
 Local delta      163
 Mask programmable gate arrays (MPGAs)      259
 Mating restriction      32 94 96 97
 Median-rank approach      31 32
 Mesh (or grid) neighborhood      130
 Messy coding      7
 Meta-algorithm      172
 Meta-evolutionary approaches      212-223
 Meta-evolutionary approaches, formal description      214 215
 Meta-evolutionary approaches, parameter settings      216 217
 Meta-evolutionary approaches, pseudocode      215 216
 Meta-evolutionary approaches, related work      217-220
 Meta-evolutionary approaches, theory      217
 Meta-evolutionary approaches, working mechanism      212-214
 Meta-GA approach      218 219
 Meta-level EAs      213
 Meta-optimization      212
 Metrics      192
 Micro-GA      136
 Migrant selection strategies      116-118
 MIMD (multiple instruction, multiple data) system      99 127 254 255
 Minimax approach      27-29
 Minimax problem      235
 Minimum Description Length (MDL) Principle      15-23
 Minimum description length (MDL)-based fitness evaluation      17 18
 Minimum-message-length principle (MML)      15-23
 Modem synthesis      102
 Monte Carlo (MC) evaluation      244 245
 Multimutational self-adaptation      205
 Multiobjective function optimization      87
 Multiobjective optimization method      25-37 69
 Multiobjective optimization, current evolutionary approaches      26
 Multiple instruction, multiple data (MIMD) system      99 127 254 255
 Mutation      98 178
 Mutation function      219
 Mutation mechanism      199
 Mutation operators      112 178 189-205 242 243
 Mutation operators, computation time      250
 Mutation parameters      142-151
 Mutation parameters for direct schedules      144-149
 Mutation parameters for self-adaptation      143 144
 Mutation rate      142 144 145 147
 Mutation step size parameter      178
 Mutation value replacement method      219
 Mutational step size      143
 n-point recombination      154
 Natural evolution, theories      102-104
 Near-feasible threshold (NFT)      46
 Network weight optimization problem      218
 Neural networks      231 260
 Neural networks, weight optimization problem      219
 Niching methods      87-92
 Niching methods, parameters and extensions      88 89
 Niching methods, theory      90 91
 Noncoevolutionary EAs      228
 Nonlinear optimization problems, with linear constraints      64 65
 Nonlinear programming      38 59-61
 Normalized modification      148
 Number of populations      226
 Objective fitness      12
 Objective fitness functions      12
 Objective function      194
 Occam's razor      15
 Occupancy rate      162
 Operations research (OR)      38 see
 Operator delta      163
 Operator tree      163
 Optimal schedules      145
 Optimal schema processing      135 136
 Optimization problems      174 176
 Pallet loading      50
 Parallel algorithms      99
 Parallel computer architectures      254
 Parallel environments for diffusion model implementation      127 128
 Parallel evaluation      245 246
 Parallel generate-and-test algorithm      245
 Parallel genetic algorithms (PGAs)      120 253
 Parallel genetic algorithms (PGAs), overview      253-256
 Parallel structure      112
 Parallelism      255
 Parallelization      101 102
 Parameter changes      185
 Parameter control      170-187
 Parameter control, classification schemes      170 171
 Parameter control, on-line      185
 Parameter control, value of      184
 Parameter settings by analogy      173
 Parameter settings, optimal      172
 Parameter settings, optimizing      183
 Parameter tuning      170 173
 Parameter values      170 174 181
 Pareto optimality      25
 Pareto ranking      32 33
 Pareto ranking with goal and priority information      33-35
 Parthenon      260
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |  
    |  |  |  |  |