| Книга | Страницы для поиска |
| Guillemin V., Pollack A. - Differential topology | 196 |
| Aleksandrov A.D., Zalgaller V.A. - Intrinsic Geometry of Surfaces | 8-9, 190 |
| Taylor M.E. - Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 492 |
| Evans L.C. - Partial Differential Equations | 488 |
| Gilbert J., Murray M. - Clifford Algebras and Dirac Operators in Harmonic Analysis | 311, 317 |
| Olver P.J. - Equivalence, Invariants and Symmetry | 333 |
| Eisenhart L.P. - An introduction to differential geometry with use of the tensor calculus | 191 |
| Lee J.M. - Riemannian Manifolds: an Introduction to Curvature | 7, 167 |
| Millman R.S., Parker G.D. - Elements of Differential Geometry | 188 |
| Vilenkin A., Shellard E.P.S. - Cosmic strings and other topological defects | 187 |
| Lee J.M. - Introduction to Topological Manifolds | 8 |
| Gallot S., Hulin D. - Riemannian Geometry | 3.111. |
| Ivey Th.A., Landsberg J.M. - Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 62 |
| Petersen P. - Riemannian Geometry | 101 |
| Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics (vol. 1) | 395 |
| Aleksandrov A.D., Zalgaller V.A. - Intrinsic Geometry of Surfaces | 8-9, 190 |
| Boothby W.M. - An introduction to differentiable manifolds and riemannian geometry | 415 |
| Ratcliffe J.G. - Foundations of Hyperbolic Manifolds | 390, 528 |
| Jost J., Simha R.T. - Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 33, 62, 176, 232 |
| Duistermaat J.J., Kolk J.A.C. - Multidimensional Real Analysis II: Integration | 776 |
| Vick J.W. - Homology theory. An introduction to algebraic topology | 207 |
| Heusler M., Goddard P. - Black Hole Uniqueness Theorems | 98, 144 |
| Chaikin P.M., Lubensky T.C. - Principles of condensed matter physics | 626, 670 |
| Arnold V.I., Khesin B.A. - Topological methods in hydrodynamics | 296 |
| Gompper G., Schick M. - Self-Assembling Amphiphilic Systems | 133 |
| Kobayashi S., Nomizu K. - Foundations of Differential Geometry, Volume 2 | 318, 358 |
| Morita S. - Geometry of differential forms | 216 |
| Singer I.M., Thorpe J.A. - Lecture Notes on Elementary Topology and Geometry | 176 |
| Ablowitz M.J., Segur H. - Solitons and the Inverse Scattering Transform | 348 |
| Morita Sh. - Geometry of Differential Forms | 216 |
| Bleecker D. - Gauge Theory and Variational Principles | 126 |
| O'Neill B. - Elementary differential geometry | 380-383, 387(Ex. 8) |
| Choquet-Bruhat Y., Dewitt-Morette C. - Analysis, Manifolds and Physics (vol. 2) | 330 |
| Held A. (ed.) - General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 184, 363, 386 |
| Morgan F. - Riemannian geometry, a beginners guide | 65, 67-69,71 |
| Fulling S. - Aspects of Quantum Field Theory in Curved Spacetime | 114, 214 |
| Dubrovin B.A., Fomenko A.T. - Modern Geometry - Methods and Applications: The Geometry of Surfaces, Transformation Groups and Fields | 401 |
| Held A. (ed.) - General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 184, 363, 386 |
| Fomenko А.Т., Mishehenko A.S. - A Short Course in Differential Geometry and Topology | 240 |
| Hans-Jürgen Stöckmann - Quantum Chaos: An Introduction | 335, 340 |
| Berger M., Cole M. (translator) - Geometry I (Universitext) | 12.7.5.2 |
| Birrell N.D., Davies P.C.W. - Quantum Fields in Curved Space | 162 |
| Tsvelik A.M. - Quantum field theory in condensed matter physics | 77 |
| Rosenfeld B. - Geometry of Lie Groups | 17 |
| Boothby W.M. - An Introduction to Differentiable Manifolds and Riemannian Geometry | 415 |
| Nash C. - Differential Topology and Quantum Field Theory | 104, 134, 152, 163 |
| Fuchs D., Tabachnikov S. - Mathematical omnibus: Thirty lectures on classical mathematics | 282, 288 |
| Moerdijk I., Reyes G.E. - Models for smooth infinitesimal analysis | 213 |
| Morita S. - Geometry of Differential Forms | 216 |
| Spivak M. - A Comprehensive Introduction to Differential Geometry. Volume 3 | 400 |
| Prasolov V.V., Tikhomirov V.M. - Geometry | 145 |
| Tsvelik A.M. - Quantum field theory in condensed matter physics | 77 |
| Kentaro Yano - Integral Formulas in Riemannian Geometry | 16 |
| Chaikin P., Lubensky T. - Principles of condensed matter physics | 626, 670 |
| Hsiung C.-C. - A first course in differential geometry | 256 |
| Candel A., Conlon L. - Foliations I | 148, 331 |
| Lemm J.M. - Mathematical elasticity. Theory of shells | 83, 133 |
| Ivey T.A., Landsberg J.M. - Cartan for beginners: differential geometry via moving frames exterior differential systems | 62 |
| Frankel T. - The geometry of physics: an introduction | 215, 323, 462 |
| Mineev V.P. - Topologically stable defects and solutions in ordered media | 66 |
| Sattler K.D. - Handbook of Nanophysics: Functional Nanomaterials | 16-8 |
| Penrose R., Rindler W. - Spinors and space-time. Spinor and twistor methods in space-time geometry | 27 |
| Casson A.J., Bleiler S.A. - Automorphisms of surfaces after Nielsen and Thurston | 9 |
| Stillwell J. - Mathematics and its history | 247-250, 258, 297-302, 306 |
| Milnor J.W., Stasheff J.D. - Characteristic Classes. (Am-76), Vol. 76 | 303ff, 310f |
| Yano K. - Integral Formulas in Riemannian Geometry | 16 |
| Frankel T. - The geometry of physics: An introduction | 215, 323, 462
Gauss - Bonnet theorem as an index theorem |
| Hestenes D., Sobczyk G. - Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (Fundamental Theories of Physics) | 279 |
| Klingenberg W. - A Course in Differential Geometry (Graduate Texts in Mathematics) | 138-144 |
| Azcarraga J., Izquierdo J. - Lie groups, Lie algebras, cohomology and some applications in physics | 136 |