Книга | Страницы для поиска |
Кормен Т., Лейзерсон Ч., Ривест Р. - Алгоритмы: построение и анализ | 739 |
Koepf W. - Hypergeometric Summation. An algorithmic approach to summation and special function identities. | 62 |
Ito K. - Encyclopedic Dictionary of Mathematics. Vol. 2 | 67.H 297.A |
Lang S. - Algebra | 111 |
Nathanson M.B. - Elementary methods in number theory | 12 |
Apostol T.M. - Introduction to Analytic Number Theory | 15, 20, 21 |
Dodge C.W. - Sets, logic & numbers | 91 |
Graham R.L., Knuth D.E., Patashnik O. - Concrete mathematics | 92, 103-104, 107, 145 |
Lipschutz Seymour - Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 447 |
Baker A. - Algebra and Number Theory | 3 |
Barbeau E.J. - Polynomials: a problem book | see Divisibility |
Hoffman K., Kunze R. - Linear algebra | 133 |
Lueneburg H. - Tools and fundamental constructions of combinatorial mathematics | 29 |
Miller E., Sturmfels B. - Combinatorial Commutative Algebra | 81, 92 |
Eisenbud D. - Commutative algebra with a view toward algebraic geometry | 320 |
Bini D., Pan V.Y. - Polynomial and matrix computations. Fundamental algorithms. Vol.1 | See gcd |
Gilbert W.J., Nicholson W.K. - Modern Algebra with Applications | 21, 184, 299 |
Becker T., Weispfenning V. - Groebner bases and commutative algebra | 4, 38, 43 |
Kreuzer M., Robbiano L. - Computational commutative algebra 1 | 31 |
Conway J.B. - Functions of One Complex Variable | 174 |
Benson D. - Mathematics and music | 148, 300 |
Maple 8. Learning guide | 64 |
Newman M. - Integral Matrices | 2 |
Bach E., Shallit J. - Algorithmic Number Theory (том 1) | 3, 34, 67-99, 186 |
Artin M. - Algebra | 46,395 |
Dummit D.S., Foote R.M. - Abstract Algebra | 4, 5, 273, 279, 285 |
Lorentzen L., Waadeland - Continued fractions and applications | 399 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 332, 358 |
Thorisson H. - Coupling, Stationarity, and Regeneration | 42 |
Burton D.M. - Elementary Number Theory | see also 'Euclidean algorithm' |
Merris R. - Combinatorics | 101 |
Lorenz F., Levy S. - Algebra, Volume I: Fields and Galois Theory | 34 |
Ash R.B. - Abstract algebra: the basic graduate year | 2.6, 7.7 |
Velleman D.J. - How to Prove It: A Structured Approach | 299 |
Polyanin A., Manzhirov A.V. - Handbook of Mathematics for Engineers and Scientists | 4 |
Enderton H.B. - Elements of set theory | 172 |
Everest G., Ward T. - An Introduction to Number Theory | 36, 46 |
Knopfmacher J. - Abstract Analytic Number Theory | 33, 112 |
Humphreys J.E. - A Course in Group Theory | 235 |
Surowski D. - Workbook in higher algebra | 79, 80 |
Connell E.H. - Elements of abstract and linear algebra | 15 |
Accola R.D. - Topics in the Theory of Riemann Surfaces | 5 |
Lozansky E., Rousseau C. - Winning Solutions | 2 |
Thompson J.E. - Arithmetic for the Practical Man | 35 |
Allouche J.-P., Shallit J. - Automatic Sequences: Theory, Applications, Generalizations | 250 |
Boffi G., Buchsbaum D. - Threading Homology through Algebra: Selected Patterns | 1 |
Swallow J. - Exploratory Galois Theory | 9,11 |
Alaca S., Williams K.S. - Introductory Algebraic Number Theory | 11, 29, 64 |
Ciarlet P.G. (ed.), Lions J.L. (ed.) - Handbook of Numerical Analysis, Vol. 3 | 634 |
Koblitz N. - A course in number theory and cryptography | 12 |
Olds C.D., Davidoff G. - Geometry of Numbers | 5, 7 |
Garey M.R., Johnson D.S. - Computers and intractability. A guide to the theory of NP-completeness | 250. |
Humphreys J.F., Prest M.Y. - Numbers, Groups and Codes | 7,12, 31, 32, 43, 50, 268ff |
Stillwell J. - Yearning for the Impossible: The Surprising Truths of Mathematics | see gcd |
Murty M.R., Esmonde J. - Problems in algebraic number theory | 59 |
Sandor J., Mitrinovic D.S., Crstici B. - Handbook of Number Theory II | 263 |
Cohen H.A. - A Course in Computational Algebraic Number Theory | 7, 12, 115 |
Jones J.A., Jones J.M. - Elementary Number Theory | 5, 23 |
Hein J.L. - Discrete Mathematics | 26, 67, 249 |
Stewart I., Tall D. - Algebraic Number Theory and Fermat's Last Theorem | 114 |
Polya G. - Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 116, 146 |
Knuth D.E. - The art of computer programming (vol. 2 Seminumerical Algorithms) | 330-356, 483 |
Lang S. - Undergraduate Algebra | 5, 119, 144 |
Ross Sh.M. - Topics in Finite and Discrete Mathematics | 24 |
Purdom R.W., Brown C.A. - The analysis of algorithms | 15 |
Ito K. - Encyclopedic Dictionary of Mathematics | 67.H, 297.A |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. - Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 94 |
Braunstein S.L. - Quantum computing | 15, 16, 19, 27 |
Kolman B., Busby R.C., Cutler S.C. - Discrete Mathematical Structures | 23 |
Guy R.K. - Unsolved Problems in Number theory | A, E2 |
Gruenberg K.W. - Linear Geometry | 161 |
Sheil-Small T. - Complex polynomials | 106 |
Tourlakis G.J. - Lectures in Logic and Set Theory: Mathematical Logic | 157 |
Alagić S., Arbib M.A. - The Design of Well-Structured and Correct Programs | 2-4, 7, 45-47, 49, 187, 223-226, 256 |
Dickson L.E. - History of the Theory of Numbers, Volume I: Divisibility and Primality | 139, 147, 150, 252, 328, 332-336, 394, 401-403, 447, 456, 482 (see also 'Determinant of Smith') |
Knuth D.E. - The art of computer programming (Vol. 1. Fundamental algorithms) | 2, 4-6, 9, 14-15, 38-39, 42, 80-81 |
Knuth D.E. - The art of computer programming (Vol. 2. Seminumerical algorithms) | 316-339, 464 |
Brookshear J.G. - Computer Science: An Overview | 18 |
Olds C.D. - Continued Fractions | 17 |
Hein J.L. - Discrete Structures, Logic, and Computability | 25, 65, 245 |
Lawrence C. Paulson - ML for the working programmer | 3, 10, 48, 53, 248 |
Knuth D.E. - The art of computer programming (vol. 3 Sorting and Searching) | 91, 185, 683-684 |
McCoy N.H. - Rings and ideals | 42 |
Stetter H. J. - Numerical polynomial algebra | 207 |
Herman J., Simsa J., Kucera R. - Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory | 178, 180 |
Dickson L.E. - History of the Theory of Numbers, Volume ll: Diophantine Analysis | 50, 51, 73, 74, 313, 772 (see also 'Euclid') |
D'Angelo J.P., West D.B. - Mathematical Thinking: Problem-Solving and Proofs | 123, 30, 133, 8, 145, 154, 164, 168, 193 |
Kozen D.C. - The Design And Analysis Of Algorithms | 4 |
Jacobson N. - Lectures in Abstract Algebra, Vol. 1 | 13, 118 |
Kuttler K. - Calculus, Applications and Theory | 33 |
Hubbard J.R. - Theory and Problems of Fundamentals of Computing with C++ | 258 |
Fuhrmann P.A. - A Polynomial Approach to Linear Algebra | 10, 16 |
Ward S.A. - Computation Structures | 198, 340 |
Young R.M. - Excursions in Calculus: An Interplay of the Continuous and the Discrete | see also 'Euclidean algorithm', 26 |
Knuth D.E. - The art of computer programming (vol. 1 Fundаmental algorithms) | 2-9, 13-14, 40, 81-82 |
Mac Lane S., Birkhoff G.D. - Algebra | 434 |
Kurosh A. - Higher Algebra | 131, 133 |
Hungerford T.W. - Algebra | 11, 140 |
Curtis M.L. - Abstract Linear Algebra | 90 |
Hubbard J.R. - Theory and Problems of Programming with C++ | 123 |
Marcus M., Minc H. - Survey of matrix theory and matrix inequalities | 40 |
Pavičić M. - Quantum Computation and Quantum Communication: Theory and Experiments | 180 |
Moh T.T. - Algebra | 9, 117 |
Ginsburg S. - The mathematical theory of context-free languages | 5 |
Greub W.H. - Linear Algebra | 346 |
Bhaskara Rao K.P.S. - Theory of generalized inverses over commutative rings | 2 |
Lang S. - Algebra | 111 |
Ryser H.J. - Combinatorial Mathematics | 19 |
Cox D.A., Little J., O'Shea D. - Using Algebraic Geometry | see GCD |
Seymour L. - Schaum's Outline of Theory and Problems of Discrete Math | 63, 321 |
Hans Rademacher - Lectures on elementary number theory | 15 |
Hu S.-T. - Introduction to contemporary mathematics | 51 |
United States NAVY - Mathematics, basic math and algebra (Navy course) | 34 |
Rosenfeld A. - An introduction to algebraic structures | 41, 127 |
Brewer J.W., Bunce J.W., Vleck F.S. - Linear systems over commutative rings | 29 |
Goldstein L.J. - Analytic Number Theory | 17 |
B.M. Stewart - Theory of Numbers | 34 |
Ginsburg S. - The mathematical theory of context-free languages | 5 |
Birkhoff G., Mac Lane S. - A Survey of Modern Algebra | 19, 81, 407 |
Bettinger A.K. - Algebra and Trigonometry (International Textbooks in Mathematics) | 30 |
Goodman A.W. - The Pleasures of Math | 168-170 |
Greub W.H. - Linear Algebra | 346 |
Baker A. - A Concise Introduction to the Theory of Numbers | 2 |
Brookshear J. - Computer Science | 18 |
Averbach B., Chein O. - Problem solving through recreational mathematics | 116, 128, 130, 131-132 |
Howie J.M. - Fields and Galois Theory | 26, 39 |
Moskowitz M.A. - Adventures in mathematics | 27 |
Moh T.T. - Algebra | 9, 117 |
Koepf W. - Hypergeometric summation. An algorithmic approach to summation and special function identities | 62 |
Penney D.E. - Perspectives in Mathematics | 205 |
Greene D.H., Knuth D.E. - Mathematics for the analysis of algorithms | 75 |
Weil A. - Number theory for beginners | 7 |
Greene D.H., Knuth D.E. - Mathematics for the analysis of algorithms | 71 |
Lipschutz S., Lipson M.L. - Schaum's outline of theory and problems of discrete mathematics | 63, 321 |
Gruenberg K.W., Weir A.J. - Linear Geometry | 161 (exx. 3, 6) |
Du D.-Z., Ko K.-I. - Theory of computational complexity | 114 |
Daepp U., Gorkin P. - Reading, writing and proving. Close look at mathematics | 315 |
Lang S. - Linear Algebra | 285 |
Herstein I.N. - Topics in algebra | 18, 145 |
Niven I., Zuckerman H.S. - An Introduction to the Theory of Numbers | 4 |
Ore O. - Invitation to Number Theory | 40 |
Courant R., Robbins H. - What Is Mathematics?: An Elementary Approach to Ideas and Methods | 413-445 |
Fritzsche K., Grauert H. - From Holomorphic Functions To Complex Manifolds | 117 |
LeVeque W.J. - Elementary theory of numbers | 22, 101 |
Gossett E. - Discrete Math with Proof | 97 |
Benjamin A.T., Quinn J. - Proofs That Really Count The Art of Combinatorial Proof | 11, 118 |
Childs L. - A concrete introduction to higher algebra | 20, 132, 318 |
Abhyankar S.S. - Lectures on Algebra Volume 1 | 17-18 |
Hammerlin G., Hoffmann K.-H., Schumaker L.L. - Numerical Mathematics | 30, 31 |
Coutinho S. - The mathematics of ciphers: number theory and RSA cryptography | 7-8, 12, 22-23 |
Scheinerman E.A. - Mathematics: A Discrete Introduction | 299, 480, 547 |
Burgisser P., Clausen M., Shokrollahi M.A. - Algebraic complexity theory | see "Euclidean algorithm", "Euclidean representation" |
Gill A. - Applied Algebra for the Computer Sciences | 84, 311 |
Kolman B., Busby R.C., Ross S. - Discrete Mathematical Structures | 24 |
Shen A. - Algorithms and Programming | 4 |
Ward S., Halstead R. - Computation Structures (MIT Electrical Engineering and Computer Science) | 198, 340 |
Gries D. - The science of programming | see "gcd" |
Ross D. - Master Math: Basic Math and Pre-Algebra (Master Math Series) | 34 |
Clocksin W.F., Mellish C.S. - Programming in Prolog, using the ISO standard | 176 |