Книга | Страницы для поиска |
Kharazishvili A.B. - Strange functions in real analysis | |
Bartle R.G. - The Elements of Real Analysis | 224 |
Apostol T.M. - Calculus (vol 1) | 122, 189 |
Hunter J.K., Nachtergaele B. - Applied Analysis | 209 |
Rudin W. - Principles of Mathematical Analysis | 101 |
Reed M., Simon B. - Methods of Modern mathematical physics (vol. 1) Functional analysis | 356 |
Graham R.L., Grotschel M., Lovasz L. - Handbook of combinatorics (vol. 1) | 901 |
Falconer K. - Fractal Geometry: Mathematical Foundations and Applications | 181-182, 287 |
Evans L.C. - Partial Differential Equations | 523, 621 |
Christofides N. - Combinatorial Optimization | 73 |
Ben-Israel A., Greville T. - Generalized inverses: Theory and applications | 115 |
Allgower E.L., Georg K. - Introduction to numerical continuation methods | cf. (13.1.17) |
Golub G.H., Ortega J.M. - Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 157 |
Cox D., Katz S. - Mirror symmetry and algebraic geometry | 39 (see also '$cpl(\sum)$') |
Fulton W. - Introduction to toric varieties | 67 |
Hughes B.D. - Random Walks and Random Environments: Random Environments (том 2) | 328 |
Rudin W. - Real and Complex Analysis | 60 |
Matousek J. - Lectures on Discrete Geometry (some chapters) | 12 |
Graham R.L., Grotschel M., Lovasz L. - Handbook of combinatorics (vol. 2) | 901 |
Conway J.B. - Functions of One Complex Variable | 134 |
Webster R. - Convexity | 193, 217 |
Pommerenke C. - Univalent functions (Studia mathematica) | 44, 47 |
Schneider R. - Convex Bodies: The Brunn-Minkowski Theory | 21 |
Hayman W.K. - Multivalent Functions | 70 |
Fletcher R. - Practical methods of optimization. Volume 1: unconstrained optimization | 43, 53 |
Fletcher R. - Practical methods of optimization. Volume 2: constrained optimization | 64, 166 |
Folland J.B. - Real Analysis: Modern Techniques and Their Applications | 109 |
Ferguson T.S. - Mathematical Statistics. A Decision Theoretic Approach | 76 |
Grotschel M., Lovasz L., Schrijver A. - Geometric Algorithms and Combinatorial Optimization | 49, 55-56, 188 |
Balakrishnan N., Nevzorov V.B. - A Primer on Statistical Distributions | 10 |
Polyanin A., Manzhirov A.V. - Handbook of Mathematics for Engineers and Scientists | 245 |
Bapat R.B., Raghavan T.E., Rota G.C. (Ed) - Nonnegative Matrices and Applications | 165 |
Dacorogna B. - Direct Methods in the Calculus of Variations | 207 |
Hasumi M. - Hardy Classes on Infinitely Connected Riemann Surfaces | XI.1A |
Wise G.L., Hall E.B. - Counterexamples in Probability and Real Analysis | 21, 53, 59, 60, 127, 142 |
McEneaney W.M. - Max-Plus Methods for Nonlinear Control and Estimation | 13 |
Cao Z.-Q., Kim K.H., Roush F.W. - Incline algebra and applications | 100 |
Falconer K.J. - Techniques in Fractal Geometry | 4 |
Krantz S.G. - Function Theory of Several Complex Variables | 81, 114 |
Loeve M. - Probability Theory (part 1) | 161 |
Phelps R.R. - Convex Functions, Monotone Operators and Differentiability | 1 |
Pugh C.C. - Real Mathematical Analysis | 46 |
Lange K. - Optimization | 9, 95 |
Rockafellar R.T. - Convex analysis | 23 |
Ross S. - A First Course in Probability | 417 |
Reed M., Simon B. - Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 356 |
Atkinson K.E., Han W. - Theoretical Numerical Analysis: A Functional Analysis Framework | 129 |
Khuri A.I. - Advanced calculus with applications in statistics | 79, 84, 98 |
Simon B. - The Statistical Mechanics of Lattice Gases (vol 1) | 34 |
Lad F. - Operational Subjective Statistical Methods. A Mathematical, Philosophical, and Historical Introduction | 256 |
Spivak M. - Calculus | 204 |
Royden H.L. - Real Analysis | 108 |
Reed M., Simon B. - Methods of Modern mathematical physics (vol. 4) Analysis of operators | 104 |
Yeomans J.M. - Statistical Mechanics of Phase Transitions | 19, 22 |
Polya G. - Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | VI 36 76 |
Motwani R., Raghavan P. - Randomized algorithms | 98 |
Sinha S.M. - Mathematical Programming: Theory and Methods | 94 |
Royden H.L. - Real Analysis | 108 |
Simon B. - Functional Integration and Quantum Physics | 93 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. - Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 101 |
Kuhn D. - Generalized Bounds For Convex Multistage Stochastic Programs | 35 |
Rudin W. - Real and complex analysis | 61 |
Giorgi G., Thierfelder J. - Mathematics of Optimization: Smooth and Nonsmooth Case | 70 |
Pedregal P. - Introduction to Optimization | 88 |
Duffie D. - Security Markets. Stochastic Models | 30 |
Apostol T.M. - Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 122, 189 |
Naniewicz Z., Panagiotopoulos P.D. - Mathematical Theory of Hemivariational Inequalities and Applications | 17 |
Sheil-Small T. - Complex polynomials | 242 |
Phillips G.M. - Interpolation and Approximation by Polynomials | 259, 269, 270 |
David H., Nagaraja H. - Order Statistics (Wiley Series in Probability and Statistics) | 66, 107 |
Aubin T. - Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 159, 174 |
Zeldovich Ya.B., Yaglom I.M. - Higher Math for Beginners | 234 |
Klerk de E. - Aspects of Semidefinite Programming | 149, 237 |
Bogachev V.I. - Measure Theory Vol.2 | I: 153 |
Intriligator M.D., Arrow K.J. - Handbook of Mathematical Economics (vol. 1) | 69n |
Aubin J.- P., Wilson S. - Optima and Equilibria: An Introduction to Nonlinear Analysis | 21-34, 242-247, 403, 405-406 |
Köthe G. - Topological vector spaces I | 181 |
Papadimitriou C.H., Steiglitz K. - Combinatorial Optimization: Algorithms and Complexity | 10-13 |
Mitzenmacher M., Upfal E. - Probability and Computing: Randomized Algorithms and Probabilistic Analysis | 24 |
Berger M., Cole M. (translator) - Geometry I (Universitext) | 11.8, 11.5.1, 11.8.10, 11.8.12, 11.9.15 |
Cercignani C. - Theory and Application of the Boltzman Equation | 115 |
Murota K. - Discrete convex analysis | 2, 9, 77 |
Grünbaum B. - Convex Polytopes | 13, 37 |
D'Angelo J.P., West D.B. - Mathematical Thinking: Problem-Solving and Proofs | xi, 233, 253, 320, 2, 334, 5, 397 |
Vanderbei R.J. - Linear Programming: Foundations and Extensions | 410, 414 |
Kullback S. - Information theory and statistics | 16, 34, 171 |
Pinsky M.A. - Introduction to Fourier Analysis and Wavelets | 170 |
Schulman L.S. - Techniques and applications of path integration | 174 |
Bertsekas D.P. - Dynamic programming and optimal control (Vol. 1) | 337 |
Wheeden R.L., Zygmund A. - Measure and integral. An introduction to real analysis | 118 |
Young R.M. - Excursions in Calculus: An Interplay of the Continuous and the Discrete | 199 |
Boroczky K. - Finite Packing and Covering | 329 |
Hormander L. - The analysis of linear partial differential operators I | 90, 91 |
Ash R.B., Doléans-Dade C.A. - Probability and Measure Theory | 253 |
Binmore K. - Fun and Games: A Text on Game Theory | 111, 173 |
Bóna M. - Introduction to Enumerative Combinatorics | 347 |
Steeb W.-H. - Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 217 |
Balakrishnan N. (ed.), Rao C.R. (ed.) - Order Statistics - Theory and Methods | 75, 93 |
Tuy H. - Convex analysis and global optimization | 41 |
Marcus M., Minc H. - Survey of matrix theory and matrix inequalities | 101 |
van der Giessen E., Wu T. Y. - Advances in Applied Mechanics, Volume 34 | 200, 280-282, 308, 310 |
Drmota M., Tichy R.F. - Sequences, Discrepancies and Applications | 279 |
Korner T.W. - Exercises in Fourier Analysis | see "Concave function" |
Hughes B.D. - Random walks and random enviroments (Vol. 1. Random walks) | 45 |
van Dijk N. - Handbook of Statistics 16: Order Statistics: Theory & Methods | 75, 93 |
C. Caratheodory, F. Steinhardt - Theory of Functions of a Complex Variable. 2 Volumes | 289 |
Grenander U. - Toeplitz Forms and Their Applications | 20 |
Haraux A. - Nonlinear Evolution Equations - Global Behavior of Solutions | 49-52, 97, 170 |
Rosenblatt M. - Random processes | 34 |
Browder A. - Mathematical Analysis: An Introduction | 70, 78 |
Thompson A.C. - Minkowski Geometry | 193 |
Valentine F.A. - Convex Sets | 27-28, 129 |
Kreyszig E. - Introductory functional analysis with applications | 334 |
Adler R.J. - Geometry of random fields | 9, 53 |
Bapat R.B., Raghavan T.E.S. - Nonnegative Matrices and Applications | 165 |
Gloub G.H., Ortega J.M. - Scientific Computing and Differential Equations | 157 |
Bazaraa M.S., Jarvis J.J. - Linear Programming and Network Flows | 64 |
Semadini Z. - Banach Spaces of Continuous Functions. Vol. 1 | 402 |
DeGroot M.H. - Optimal statistical decisions | 97 |
Kazarinoff N. - Analytic inequalities | 81 |
Courant R., John F. - Introduction to Calculus and Analysis. Volume 1 | 357 |
Pearson R.K. - Mining imperfect data: dealing with contamination and incomplete records | 163 |
Schulz F., Dold A. (Ed), Eckmann B. (Ed) - Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 109 |
Marsden J., Weinstein A. - Calculus 1 | 199 |
Krantz S.G. - Function theory of several complex variables | 81, 114 |
Bourgain J. - New Classes of Lp-Spaces | 5, 3 |
Kuttler K.L. - Modern Analysis | 503 |
Beckenbach E.F., Bellman R. - Inequalities | 16-19, 29, 30, 48, 50, 51, 84 |
Ash R. - Basic probability theory | 262 |
Bickel P., Doksum K. - Mathematical statistics | 518 |
Barbu V. - Analysis and control of nonlinear infinite dimensional systems | 57 |
Aubin J., Frankowska H. - Set-Valued Analysis | 222 |
Howes N.R - Modern Analysis and Topology | 317 |
Bear H.S. - A Primer of Lebesgue Integration | 153 |
Berger J.O. - Statistical decision theory and bayesian analysis | 38, 39, 45 |
Kadane J.B. (ed.) - Robustness of Bayesian Analyses | 225 |
Robinson S.M. - Convexity and Monotonicity in Finite-Dimensional Spaces | 91 |
Intriligator M.D. - Mathematical optimization and economic theory | 462 |
Greene R.E., Wu H. - Function Theory on Manifolds Which Possess a Pole | 7, 14 |
Hartmann A.K., Rieger H. - Optimization Algorithms in Physics | 136, 140 |
Schott J.R. - Matrix Analysis for Statistics | 349-353 |
De Barra G - Measure theory and integration | 5, 111, 163, 215 |
Morandi G. - Statistical Mechanics: An Intermediate Course | 25 |
Magaril-Il'yaev G.G., Tikhomirov V.M. - Convex Analysis: Theory and Applications | 1, 34 |
Mitrinović D.S., Vasić P.M. - Analytic inequalities | 15 |
Kanwal R.P. - Generalized functions: Theory and technique | 399 |
Falconer K. - Fractal geometry: mathematical foundations and applications | 181, 181-182, 287 |
Fuchssteiner B., Lusky W. - Convex Cones (North-Holland Mathematics Studies) | 34, 253 |
Reichl L.E. - Modern Course in Statistical Physics | 63 |