Книга | Страницы для поиска |
Kharazishvili A.B. - Strange functions in real analysis | |
Apostol T.M. - Calculus (vol 1) | 472, 561 |
Hunter J.K., Nachtergaele B. - Applied Analysis | 4 |
Gray R.M. - Probability, Random Processes and Ergodic Properties | 36, 54 |
Rudin W. - Principles of Mathematical Analysis | 16, 30 |
Eisenhart L.P. - Riemannian geometry | 34 |
Apostol T.M. - Calculus (vol 2) | 15 |
Artin E. - Geometric Algebra | 178 ff. |
Shorack G.R. - Probability for statisticians | 23 |
Falconer K. - Fractal Geometry. Mathematical Foundations and applications | 3 |
Falconer K. - Fractal Geometry: Mathematical Foundations and Applications | 3 |
Dodge C.W. - Sets, logic & numbers | 226, 249 |
Lipschutz Seymour - Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 203 |
Brauer F., Nohel J.A. - The qualitative theory of ordinary differential equations | 10, 16, 26 |
Heyde C.C. - Quasi-likelihood and its application: a general approach to optimal parameter estimation | 11, 92, 94, 141, 182 |
Meirovitch L. - Methods of analytical dynamics | 2, 172, 175, 211, 501 |
Olver P.J. - Equivalence, Invariants and Symmetry | 7, 29, 33, 37, 106, 164, 277, 393 |
Alon N., Spenser J. - The probabilistic method | 68, 216, 218, 222, 243 |
Molchanov I.I. - Limit theorems for unions of random closed sets | 1 |
Hoffman K., Kunze R. - Linear algebra | 277 |
Messer R. - Linear Algebra: Gateway to Mathematics | 21, 25 |
Rudin W. - Real and Complex Analysis | 34, 49 |
Buss S.R. - 3-D computer graphics. A mathematical introduction with openGL | 320 |
Lee J.M. - Introduction to Smooth Manifolds | 11, 406 |
Webster R. - Convexity | 1, 2 |
Jennings G.A. - Modern Geometry with Applications | 1 |
Ward R.S., Wells R.O. - Twistor geometry and field theory | 7, 9, 45, 148, 244, 271, 387 |
Goldstein H., Poole C., Safko J. - Classical mechanics | 517 |
Lee J.M. - Introduction to Topological Manifolds | 2, 347 |
Papapetrou A. - Lectures on general relativity | 31 |
Aris R. - Vectors, Tensors and the Basic Equations of Fluid Mechanics | 172 |
Artin M. - Algebra | 247 |
Bryant R., Griffiths P., Grossman D. - Exterior differential systems and Euler-Lagrange PDEs | vii, 21-35 |
Curtain R.F., Pritchard A.J. - Functional Analysis in Modern Applied Mathematics | 3 |
Dodge C.W. - Foundations of algebra and analysis | 226, 249 |
Debnath L., Mikusinski P. - Introduction to Hilbert Spaces with Applications | 92 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of Mathematics, Volume II: Geometry | 374, 375, 563 |
Gupta M.M., Jin L., Homma N. - Static and dynamic neural networks | 588 |
Ryder L.H. - Quantum Field Theory | 185 |
Bogachev V.I. - Measure Theory Vol.1 | 254 |
Mill J.V. - The Infinite-Dimensional Topology of Function Spaces | 3, 64, 65, 149, 151, 461 |
Engel K. - Sperner theory | 209 |
Balakrishnan N., Nevzorov V.B. - A Primer on Statistical Distributions | 15 |
Polyanin A., Manzhirov A.V. - Handbook of Mathematics for Engineers and Scientists | 192 |
Devlin K.J. - Language of Mathematics: Making the Invisible Visible | 184 |
Kohonen T. - Self-organizing maps | 4 |
Falconer K.J. - Techniques in Fractal Geometry | 1 |
Krantz S.G. - Function Theory of Several Complex Variables | 1 |
Hertrich-Jeromin U. - Introduction to Mobius Differential Geometry | 42, 47, 53 |
Petersen P. - Riemannian Geometry | 2 |
Choquet-Bruhat Y., Dewitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics (vol. 1) | 299 |
Boothby W.M. - An introduction to differentiable manifolds and riemannian geometry | 4-6 |
Kapusta J.I. - Finite-temperature field theory | 41, 77, 79, 109-110, 127, 135, 138-139 |
O'Donnel P. - Introduction to 2-Spinors in General Relativity | 6, 128, 130 |
Akivis M., Goldberg V. - Differential Geometry of Varieties with Degenerate Gauss Maps | 26, 27, 47, 53, 58, 64, 87, 88,118, 126-128, 133, 134, 149,172, 196, 198, 199, 205, 218 |
Ratcliffe J.G. - Foundations of Hyperbolic Manifolds | 15 |
Weickert J. - Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 192, 193 |
Agoshkov V.I., Dubovsky P.B. - Methods for Solving Mathematical Physics Problems | 3, 11 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) - Clifford Algebras and Spinors | 93 |
Duistermaat J.J., Kolk J.A.C. - Multidimensional Real Analysis II: Integration | 2 |
Stillwell J. - Yearning for the Impossible: The Surprising Truths of Mathematics | 126, 132 |
Duistermaat J.J., Kolk J.A.C. - Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 2 |
Khuri A.I. - Advanced calculus with applications in statistics | 21 |
Chern S.-S., Shen Z. - Riemann-Finsler Geometry | 4 |
Graham R.L., Rothschild B.L., Spencer J.H. - Ramsey Theory | 40-41, 133 |
Brown K.S. - Buildings | 150 |
Sinha S.M. - Mathematical Programming: Theory and Methods | 34 |
Milewski E.G. - Topology Problem Solver | 10-3 |
Brigman P.W. - The Logic of Modern Physics | 14, 15, 16, 18, 23, 52, 61, 67 |
Antman S.S. - Nonlinear Problems of Elasticity | 4 |
Szekeres P. - A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 53 |
McDuff D., Salamon D. - Introduction to Symplectic Topology | 2 |
Menzel D.H. - Mathematical Physics | 403 |
Lipschutz S.Ph.D. - Schaum's outline of theory and problems of finite mathematics | 268 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. - Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 759 |
Morita S. - Geometry of differential forms | 147 |
Rudin W. - Real and complex analysis | 34, 49 |
Lebedev L.P., Cloud M.J. - Tensor Analysis | 72 |
Sokolnikoff I.S. - Mathematics of Physics and Modern Engineering | 321, 371n |
Robinson D.J.S. - A Course in Linear Algebra with Applications | 102, 235 |
Morita Sh. - Geometry of Differential Forms | 147 |
Duffie D. - Security Markets. Stochastic Models | 29 |
Gallier J. - Geometric Methods and Applications: For Computer Science and Engineering | 163, 267, 314, 415 |
Apostol T.M. - Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 472, 561 |
Ramond P. - Field Theory: A modern Primer | 65 |
Halmos P.R. - Finite-Dimensional Vector Spaces | 121 |
O'Neill B. - Elementary differential geometry | 3, 5 |
Bachman G., Beckenstein E. - Fourier And Wavelet Analysis | 2 |
Stakgold I. - Green's Functions and Boundary Value Problems | 264 |
Phillips G.M. - Interpolation and Approximation by Polynomials | 163 |
Weir A.J. - Lebesgue Integration and Measure | 70-92, 124 et aqq., 219 et aqq. |
Bogachev V.I. - Measure Theory Vol.2 | I: 254 |
Strichartz R.S. - The way of analysis | 355, 368 |
Schechter M. - Spectra of partial differential operators | 39 |
Lopuzanski J. - An introduction to symmetry and supersymmetry in quantum field theory | 15 |
Köthe G. - Topological vector spaces I | 23 |
O'Neill B. - Semi-Riemannian Geometry: With Applications to Relativity | 1, 3, 55, 228 |
Dubrovin B.A., Fomenko A.T. - Modern Geometry - Methods and Applications: The Geometry of Surfaces, Transformation Groups and Fields | 9 |
Munkres J.R. - Analysis on manifolds | 25 |
Nayfeh M.H., Brussel M.K. - Electricity and Magnetism | 570 |
Faugeras O., Luong Q., Papadopoulo T. - The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications | see 'Affine space Euclidean' |
Rourke C.P., Sanderson B.J. - Introduction to Piecewise-Linear Topology | 1 |
Eschenauer H., Olhoff N., Schnell W. - Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 5, 8, 10, 304 |
Englert B.G. (Ed) - Quantum Mechanics | 38 |
Berger M., Cole M. (translator) - Geometry I (Universitext) | 2.7.5.8, 3.7.8, 7.0.1, 9.1.1 |
Hu S.-T. - Elements of real analysis | 127, 164, 207 |
Munkres J. - Topology | 38 |
Grünbaum B. - Convex Polytopes | 7a |
Betten J. - Creep Mechanics | 16, 49 |
Billingsley P. - Probability and Measure | A1, A16 |
Hu S.-T. - Elements of general topology | 37 |
Miller W. - Symmetry Groups and Their Applications | 16 |
Farin G., Hansford D. - Practical Linear Algebra: A Geometry Toolbox | 14, 166 |
Fine B., Rosenberger G. - Fundamental Theorem of Algebra | 140 |
Junker G. - Supersymmetric Methods in Quantum and Statistical Physics | 9 |
Eisenhart L.P. - Continuous groups of transformations | 186, 188, 190, 191 |
Kullback S. - Information theory and statistics | 3, 383 |
Ardema M.D. - Analytical Dynamics: Theory and Applications | 1 |
Bertsekas D.P. - Dynamic programming and optimal control (Vol. 1) | 330 |
Wheeden R.L., Zygmund A. - Measure and integral. An introduction to real analysis | 1 |
Olver P.J., Shakiban C. - Applied linear. algebra | 78, 101, 131, 219 |
O'Neill B. - The Geometry of Kerr Black Holes | 2 |
Ambjorn J., Durhuus B., Jonsson T. - Quantum Geometry: A Statistical Field Theory Approach | 271 |
D'Inverno R. - Introducing Einstein's Relatvity | 27, 56, 57, 66, 67, 102, 107, 135, 189, 190, 208, 308, 319, 320, 321, 326, 329, 352 |
Sokolnikoff I.S. - Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 4, 25, 75, 00, 112 |
Holmes P., Lumley J.L., Berkooz G. - Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 14 |
Bertlmann R.A. - Anomalies in Quantum Field Theory | 250 |
Lawden D.F. - An Introduction to Tensor Calculus, Relativity and Cosmology | 88, 96, 106, 109 |
Gilmore R. - Lie Groups, Lie Algebras and Some of Their Applications | 14 |
Tolman R.C. - Relativity, thermodynamics, and cosmology | 31 |
van der Giessen E., Wu Theodore Y.-T. - Advances in Applied Mechanics, Volume 37 | 279, 280 |
Siegel W. - Fields | IA4, IIIC4, VB4 |
Rosenfeld B. - Geometry of Lie Groups | 8, 168-169 |
Graybill F.A. - Matrices with Applications in Statistics | 54 |
Bow S.-T. - Pattern recognition and image preprocessing | 20, 62 |
Boothby W.M. - An Introduction to Differentiable Manifolds and Riemannian Geometry | 4-6 |
Zhang Y. - Visual Information Representation, Communication and Image Processing | 11 |
Marcus M., Minc H. - Survey of matrix theory and matrix inequalities | 60 |
Bishop R.L., Crittenden R.J. - Geometry of manifolds | 2, 108, 132 |
Farin G. - Curves and surfaces for computer aided geometric design | 12 |
M.A.Akivis, V.V.Goldberg - Projective Differential Geometry of Submanifolds | v, 21, 22, 134, 135, 141, 173, 205, 221, 259 |
Carmeli M. - Classical Fields: General Gravity and Gauge Theory | 33 |
Katznelson I., KatznelsonY.R. - A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 103 |
Hughes B.D. - Random walks and random enviroments (Vol. 1. Random walks) | 6 |
Rektorys K. - Survey of applicable mathematics | 996 |
Bridges D.S. - Foundations Of Real And Abstract Analysis | 127 |
Lefschetz S. - Differential Equations: Geometric Theory | 3 |
Williamson J.H. - Lebesgue Integration | 7 |
Balakrishnan N., Rao C.R. - Handbook of Statistics (Vol. 17): Order Statistics: Applications | 15 |
Adomian G. - Stochastic Systems | 80 |
Naimark M.A., Stern A.I. - Theory of Group Representations | 46 |
Morita S. - Geometry of Differential Forms | 147 |
Goffman C. - Calculus of several variables | 5 |
Grosche C. - Path integrals, hyperbolic spaces, and Selberg trace formulae | 37, 113, 196, 205 |
Cairns S.S. - Introductory topology | 48, 50 |
Rogosinski W.W. - Volume and integral | 1.1 |
Novikov S.P., Fomenko A.T. - Basic elements of differential geometry and topology | 2 |
Valentine F.A. - Convex Sets | 7, 57, 208 |
Hermann R. - Differential geometry and the calculus of variations | 3, 22, 24, 98, 164, 276 |
Hu S.T. - Introduction to general topology | 37, 113, 196, 205 |
Hu S.-T. - Introduction to contemporary mathematics | 25, 125, 167 |
Hayes D.F. (ed.), Shubin T. (ed.) - Mathematical Adventures for Students and Amateurs | 209 |
Adler R.J. - Geometry of random fields | 5 |
Bazaraa M.S., Jarvis J.J. - Linear Programming and Network Flows | 42 |
Antsaklis P.S., Michel A.N. - Linear Systems | 437, 441 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. - Analysis, manifolds and physics. Part I. | 299 |
Bondi H. - Cosmology | 19, 41, 42, 93, 102, 112 |
Finkbeiner D.T. - Introduction to Matrices and Linear Transformations | 170, 173, 175-179 |
Spanier E.H. - Algebraic Topology | 9 |
DeGroot M.H. - Optimal statistical decisions | 8 |
Prasolov V.V., Tikhomirov V.M. - Geometry | 18 |
Munkres J.R. - Topology: A First Course | 37 |
Borovik A.V. - Mathematics under the microscope | 31, 47 |
Wilson W. - Theoretical physics - Relativity and quantum dynamics | 5, 7 |
Astarita G., Marrucci G. - Principles of Non-Newtonian Fluid Mechanics | 24-26, 29, 124 |
Greub W.H. - Linear Algebra | 181, 282 |
Verdina J. - Projective Geometry and Point Tranformations | 162 |
Porteous I.R. - Clifford Algebras and the Classical Groups | 39 |
Siegel W. - Fields | IA4, IIIC4, VB4 |
Krantz S.G. - Function theory of several complex variables | 1 |
Stakgold I. - Green's functions and boundary value problems | 264 |
Lounesto P. - Clifford algebras and spinors | 93 |
Hadley G. - Linear programming | 40 |
Weinreich G. - Geometrical vectors | 1-2 |
Rektorys K. (ed.) - Survey of Applicable Mathematics | 996 |
Ambjorn J., Durhuus B., Jonsson T. - Quantum Geometry. A Statistical Field Theory Approach | 271 |
Hsiung C.-C. - A first course in differential geometry | 1 |
Choquet-Bruhat Y. - General Relativity and the Einstein Equations | 537 |
Dorst L., Fontijne D., Mann S. - Geometric algebra for computer science | 185 |
Schutz B.F. - A first course in general relativity | 74, 125 |
Biedenharn L.C., Louck J.D. - Angular momentum in quantum physics | 26, 180 |
Anderson J.L. - Principles of Relativity Physics | 151 |
Laurens Jansen - Theory of Finite Groups. Applications in Physics | 61, 85-86 |
Dieudonne J. - Linear Algebra and Geometry. | 50 |
Apostol T.M. - Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 15 |
Cohen G.L. - A Course in Modern Analysis and Its Applications | 87, 252 |
Schott J.R. - Matrix Analysis for Statistics | 36 |
Margalef-Roig J., Outerelo Dominguez E. - Differential topology | 3 |
Lee A. - Mathematics Applied to Continuum Mechanics | 4 |
Spivak M. - Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 1 |
Greub W., Halperin S., Vanstone R. - Connections, curvature, and cohomology. Volume 1 | 2 |
De Barra G - Measure theory and integration | 16 |
Akenine-Möller T. - Real-Time Rendering | 715-718 |
Ivanov O.A. - Easy as Pi?: An Introduction to Higher Mathematics | 37, 55, 118, 121, 125, 128 |
Hestenes D., Sobczyk G. - Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (Fundamental Theories of Physics) | 102 |
Schutz B. - Geometrical Methods in Mathematical Physics | 15, 65, 79, 121, 161, 176, 182, 197, 198, 214, 218 |
Klingenberg W. - A Course in Differential Geometry (Graduate Texts in Mathematics) | 1 |
Marcus M., Minc H. - Introduction to Linear Algebra | 31 |
Falconer K. - Fractal geometry: mathematical foundations and applications | 3 |
Choquet-Bruhat Y., Dewitt-Morette C. - Analysis, manifolds and physics | 299 |
Azcarraga J., Izquierdo J. - Lie groups, Lie algebras, cohomology and some applications in physics | 387 |