Документ взят из кэша поисковой машины. Адрес оригинального документа : http://sp.cs.msu.ru/dvm/dvmhtm1107/eng/sys/libdvm/rtsIDe4.html
Дата изменения: Mon Feb 13 12:59:10 2006
Дата индексирования: Mon Oct 1 23:23:09 2012
Кодировка: Windows-1251
Lib-DVM. Interface description. Part 4 (12-13)
Lib-DVM interface description (contents) Part 1
(1-5)
Part 2
(6-7)
Part 3
(8-11)
Part 4
(12-13)
Part 5
(14-15)
Part 6
(16-18)
Part 7
(19)
created: february, 2001 - last edited 03.05.01 -

12 Renewing shadow edges of distributed array

Let the local part of the distributed array be represented as an aggregate of its elements defined as a set of the index tuples:

{I1 О M1: I1,init ? I1 ? I1,last } ? . . . ? {Im О Mm: Im,init ? Im ? Im,last} ? . . . ?
{I
n
О Mn: In,init ? In ? In,last} ,

where:

? - symbol of Cartesian product;
n - rank of the array;
Im - index variable of the m-th dimension (1 ? m ? n);
Im,init - the initial value of the index variable of the m-th dimension;
Im,last - the last value of the index variable of the m-th dimension;
Mm - the range of values of the index variable of the m-th dimension.

Suppose that the local part is entirely inside the array (for simplicity). Then low shadow edge of the local part of distributed array of k-th dimension is a set of its elements, defined by a set of the index corteges:

LSBk =

{ I1 О M1 : I1,init - FS*LW1 ?    I1 ?   I1,last + FS*HW1 } ?
. . . . . . . . . .   . . . . .   . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . .  
{ Ik-1 О Mk-1 : Ik-1,init - FS*LWk-1 ?    Ik-1 ?   Ik-1,last + FS*HWk-1 } ?
{ Ik О Mlow,k : Ik,init - LWk ?    Ik ?   Ik,last - 1 } ?
{ Ik+1 О Mk+1 : Ik+1,init - FS*LWk+1 ?    Ik+1 ?   Ik+1,last + FS*HWk+1 } ?
. . . . . . . . . .   . . . . .   . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . .  
{ In О Mn : In,init - FS*LWn ?    In ?   In,last + FS*HWn }
       
Here: LWi - width of the low part of the shadow edge of i-th dimension;
  HWi - width of the high part of the shadow edge of i-th dimension (parameters LowShdWidthArray and HiShdWidthArray of the functions crtda_ , section 6, and inssh_ , section12.2);
  FS - flag of full edge (parameter *FullShdSignPtr of the function inssh_, section 12.2).

Similarly high shadow edge of the local part of the distributed array of k-th dimension is defined by the set of index corteges:   

HSBk =

{ I1 О M1 : I1,init - FS*LW1 ?    I1 ?    I1,last + FS*HW1 } ?
. . . . . . . . . .   . . . . .   . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . .  
{ Ik-1 О Mk-1 : Ik-1,init - FS*LWk-1 ?    Ik-1 ?    Ik-1,last + FS*HWk-1 } ?
{ Ik О Mhigh,k : Ik,last + 1 ?    Ik ?    Ik,last + HWk } ?
{ Ik+1 О Mk+1 : Ik+1,init - FS*LWk+1 ?    Ik+1 ?    Ik+1,last + FS*HWk+1 } ?
. . . . . . . . . .   . . . . .   . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . .  
{ In О Mn In,init - FS*LWn ?    In ?    In,last + FS*HWn }

The low (high) shadow edge of k-th dimension is called full, if FS=1, and is called low (high) shadow bound, if FS=0. The union of full shadow edges of all dimensions is called full shadow edge of the local part of the distributed array:


FSB =
   n
U
k = 1

( LSBk,FS=1 U HSBk,FS=1 ) =
                 
    n                
U ( { I1 О M1 : I1,init - LW1 ?    I1 ?    I1,last + HW1 } ?
k = 1 …. .....….. ........ ………. .......... ........……. ..........…  
  { Ik-1 О Mk-1 : Ik-1,init - LWk-1 ?    Ik-1 ?    Ik-1,last + HWk-1 } ?
  { Ik О Mk : Ik,init - LWk ?    Ik ?    Ik,init - 1 ;