Документ взят из кэша поисковой машины. Адрес оригинального документа : http://theory.sinp.msu.ru/comphep_html/tutorial/node105.html
Дата изменения: Wed Aug 9 20:40:47 2000
Дата индексирования: Mon Oct 1 22:51:47 2012
Кодировка:
Vector bosons  Lagrangian of
 Higgs field Lagrangian of
 electroweak interactions Lagrangian of
 electroweak interactions Contents

Vector bosons

Gauge theory of electroweak interactions is based on the $SU(2)\times U(1)$ group. So, we have a triplet of $SU(2)$ vector fields $W^{\alpha}_\mu(x)$ and a single vector field $B_\mu(x)$. The $SU(2)$ structure constants are presented by the absolutely antisymmetric tensor $\epsilon^{\alpha\beta\gamma}$. The Lagrangian of gauge fields is written down according to (1):
\begin{displaymath}
L_{GF} = -\, \frac{1}{4} {FW^{\alpha}}_{\mu \nu}(x) {FW_{\a...
...mu \nu}(x)
-\, \frac{1}{4} FB_{\mu \nu}(x) FB^{\mu \nu}(x)\;,
\end{displaymath} (8)

where

\begin{eqnarray*}
FW^{\alpha}_{\mu \nu}(x)& =& \partial_{\mu}W^{\alpha}_{\nu}(x)...
...}(x)& =& \partial_{\mu}B_{\nu}(x) - \partial_{\nu}B_{\mu}(x)
\;;
\end{eqnarray*}



$g_2$ is a coupling constant for the $SU(2)$ gauge interaction.

Infinitesimal local gauge transformations are defined as follows

$\displaystyle (\hat D(w,b) W_{\mu})^{\alpha}(x)$ $\textstyle =$ $\displaystyle g_2 \epsilon^{\alpha\beta \gamma} W^{\beta}_{\mu}(x) w^{\gamma}(x)
+ \partial_{\mu} w^{\alpha}(x) \;;$  
$\displaystyle D(w,b) B_{\mu}(x)$ $\textstyle =$ $\displaystyle \partial_{\mu} b(x) \;.$ (9)

Let us express $W^1_\mu$ and $W^2_\mu$ in terms of a mutually conjugated couple $W^+_\mu$ and $W^-_\mu$

\begin{eqnarray*}
W^1_\mu&=&(W^-_\mu+\,W^+_\mu)/\sqrt{2}\;; \\
W^2_\mu&=& (W^-_\mu-\,W^+_\mu)/(i \sqrt{2})\;.
\end{eqnarray*}



Thus, the Lagrangian of self-interaction for the $SU(2)$ gauge fields in term of $W^+$ and $W^-$ has the form:
$\displaystyle i\,g_2 \left(\partial_\mu W^3_\nu(W^+_\mu W^-_\nu - W^-_\mu W^+_\nu)
+\partial_\mu W^+_\nu(W^-_\mu W^3_\nu - W^3_\mu W^-_\nu) \right.$      
$\displaystyle \left. -\partial_\mu W^-_\nu(W^+_\mu W^3_\nu - W^3_\mu W^+_\nu) \right)$      
$\displaystyle +g_2^2 \left( W^3_\mu W^+_\nu(W^-_\mu W^3_\nu - W^3_\mu W^-_\nu)
+\frac{1}{2} W^+_\mu W^-_\nu (W^+_\mu W^-_\nu - W^-_\mu W^+_\nu) \right)\;.$     (10)

All matter fields in the electroweak theory are either $SU(2)$ invariant singlets or belong to its fundamental representation. In the latter case they form doublets. Generators for these doublets are expressed via the Pauli $\sigma$-matrices

\begin{displaymath}
\hat \tau_{\alpha} = \hat \sigma_{\alpha}/2 \;.
\end{displaymath}

Thus the infinitesimal local gauge transformations for doublets take a form:


\begin{displaymath}
D(w,b) \psi(x)= \frac{i\,g_2}{2}w^{\alpha}(x)\hat \sigma_{\alpha}\psi(x) +
\frac{i\, g_1}{2} Y\, b(x) \psi(x) \;.
\end{displaymath}

Here $g_1$ is the coupling constant of $U(1)$ gauge interaction. The constant $Y$ depends on a type of the doublet. It is called a hypercharge.

In the gauge theory of electroweak interaction the gauge fields interact with a scalar (Higgs) doublet which has a nonzero vacuum state. Without loss of generality one can put $Y=1$ for the Higgs doublet. By means of the gauge transformation the vacuum state of this field may be presented in the form:

\begin{displaymath}
\Phi_{\Omega}= \left( \begin{array}{c} 0 \\ \phi_0/\sqrt{2}
\end{array} \right)\;,
\end{displaymath}

where $\phi_0$ is a real constant.

As a result of spontaneous symmetry breaking the $ W^{\alpha}_{\mu}$ and $B_{\mu}$ fields do not correspond to physical particles. Physical particles in this model are the photon ($A_\mu$), W-bosons ( $W^+_{\mu}\,,
W^-_{\mu}$) and Z-boson ($Z_{\mu}$). The photon field $A_{\mu}$ is a combination of gauge fields responsible for the local gauge transformations which save the Higgs vacuum $\Phi_{\Omega}$:

\begin{displaymath}
A_{\mu} = B_{\mu} \cos{\Theta_w} + W^3_{\mu} \sin{\Theta_w}\;,
\end{displaymath}

where the mixing angle $\Theta_w = \arctan(g_2/g_1)$. To complete $W^+$, $W^-$, and $A$ up to the orthonormal basis of gauge fields we introduce

\begin{displaymath}Z_{\mu} = -B_{\mu} \sin{\Theta_w} + W^3_{\mu} \cos{\Theta_w}\;. \end{displaymath}

Let $w^+(x)$, $w^-(x)$, $a(x)$, and $z(x)$ be parameters of the local gauge transformation corresponding to the fields $W^+_\mu$, $W^-_\mu$, $A_\mu$, and $Z_\mu$. Then for a matter doublet with a hypercharge $Y$ the gauge transformation is given by the following expression:

$\displaystyle {\hat D(w^+,w^-,a,z) \Psi=}$
    $\displaystyle \frac{i\,g_2}{2} \left[\sqrt{2}
\left( \begin{array}{cc} 0 & w^+ ...
...a_w\,a\, \left( \begin{array}{cc} 1+Y & 0 \\  0&Y-1 \end{array} \right) \right.$  
  $\textstyle +$ $\displaystyle \cos\Theta_w \,z\,
\left.\left(
\begin{array}{cc} 1 -Y\tan^2\Theta_w & 0 \\  0& -1 -Y\tan^2\Theta_w \end{array}\right) \right] \Psi\;.$ (11)


 Lagrangian of
 Higgs field Lagrangian of
 electroweak interactions Lagrangian of
 electroweak interactions Contents