Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://vestnik.math.msu.su/en/DATA/2009/6/node5
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 22:30:40 2016
Кодировка: Windows-1251
Cantor set and interpolation / O. D. Frolkina. // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2009. ? 6. P. 26-32
[Moscow Univ. Math. Bulletin.
Vol. 64,
N 6, 2009. P. 253-258].
In 1998, Y. Benyamini published interesting results concerning interpolation
of sequences using continuous functions \mathbb R\to\mathbb R.
In particular, he proved that there exists a continuous function \mathbb R\to \mathbb R which in some sense
"interpolates" all sequences (x_n)_{n\in\mathbb Z} \in [0,1]^{\mathbb Z} "simultaneously."
In 2005, M.R. Naulin and C. Uzcátegui unifyed and generalized
Benyamini's results. In this paper, the case of topological spaces X and Y
with an abelian group acting on X is considered.
A similar problem of "simultaneous interpolation" of all "generalized sequences" using
continuous mappings X\to Y is posed. Further generalizations of
Naulin–Uncátegui theorems, in particular, multidimensional analogues of Benyamini's results are obtained.
Key words:
\mathfrak G-space, continuous mapping, interpolation, Cantor set.