Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.chem.msu.ru/rus/journals/membranes/23/html/mb_232.pdf
Дата изменения: Mon Feb 13 17:56:00 2006
Дата индексирования: Sat Dec 22 18:23:30 2007
Кодировка:
(), .. , .. ,
, , . . , . , - . . , ( ), . : , , , , , . The process of dissolution of a stagnant drop in a capillary in the presence of a micellar solution is modeled and the effects of the main physico-chemical properties of the fluid system on the dissolution rate are studied. Using the method of integral moments an approximate one-dimensional analytical solution is derived. The dissolution rate, the positions of the drop/solvent interface and the concentration front as functions of time, as well as the time for complete dissolution of the drop are calculated. It has been found that the time for complete dissolution of the drop increases as the diffusion coefficient decreases, the drop solubility (equilibrium concentration of the dissolving substance in the solvent) decreases, the constant of solubilization increases or the drop size increases. Key words: diffusion; dissolution; drop; capillary, solubilization rate, micelles.

1. - / , ( ), , , , , , , . . [1-2]. , , , . , / . [3], - . 14

­ ()- « », - , [4-6]. , () , . ­ () ­ « », - [2, 7-10]. () , , . , () , ( ) . ­ () ­ « », , , . , / -

. . , 2004, 3 (23)


. . , . .

, «» [1113]. : (Ostwald ripening) [1113]. . [14, 15], . , . , , . . , [15], , , (), . , . [4], . n, [3]. , [3] , . () [16] . ,

. [9] , (-) . , ­ , . . . / . (Ostwald ripening) [4-5] , n- -- () . [17], [18] . (Ostwald ripening) [5], , , . ( ­ ) . , , . , , 15

. . , 2004, 3 (23)




( , ). 2. 2 0 2 L0 , ( ) Lc >> L0 . 1 (. 1). . 2 , 2 , [19-22]. , L(t) (. 1). , - 2 . 1. , . - . , 2 , a 2 . a , . ,

c ( L1 ( t ) , t ) = ceq . -

c a 2c + =D 2 , t t x

L1(t)
(1)

[4]. c ­ 2 , ceq ­ ( ) 2 L1(t) ­ -, .. t (. 1). , [3] ,

D ­ 2 , x ­ ( ). c(x, t) a(x, t) c(L(t),t) = 0; ( c / x )x= L (t) = 0; c(L1(t),t) = ceq a(L(t),t)=0; a(L1(t),t) = 0; (2)

c - x

= (c eq - c( L1 (t ), t )) , - x = L1 ( t )

-. [3, 4], , () : Mn +O M n+1, n = 0,1,2,...,N. O Mn , , , n , N ­ , .

c( L0 ,0) = 0; a( L0 ,0) = 0
, a(L1(t),t) = 0, , (). , ( ) , , , 2 -

16

. . , 2004, 3 (23)


. . , . .

( 2 ). , [3, 4],

x c( x, t ) = A(t ) 1 - L

2

(6)

a = ka c t
k a = k + c m , k
+

c(x,t), (2)

(3) ­
m

, c

­ -

1 - c( x, t ) = c eq (1 -

z l y

)





2

2

(7)

. , (1)-(3) . L1(t) ( ) . , ( , ) , L1/(t) c = 0 [23]. x x= L1 ( t ) (1)-(3), [19-22], c(x,t)

: l = L / L0 , l1 = L1 / L0 , z = x / L0 , y = l1 / l . 2 (1)-(3)

0 l1 +

l

l
1

(a + c)dz =

0

(8)

(8) , a(x,t), (2) (1)

k

dl

1

d

=-

dv d

- ka R v

(9)

c( x, t ) A(t ) + B(t ) x + E (t ) x

2

(4)

k = 3 0 /ceq = l - l1 . = t /
2

R

A(t), B(t), E(t) , , , (1) , . (2),

­ , R = L0 / D ­ . l l1 [19-22] , (1) w( z ) = 1

A(t ) = - B (t ) L + E (t ) L2 , E (t ) = - B(t ) / 2 L

l (t

)


l1 ( t

)

. , -

(5)

(1)

, (4)
. . , 2004, 3 (23)

l1



l



(

c + a ) dz =

l


1

l



2 2

z

c ( z , ) dz

(10) 17




(10) (3) (7),

dl1 6 - d (k - 3)

1 1- e
- 2

(16)

3

dl

1

d

=-

dv d

- ka R v +

6 v

(11)

(9) (11) , , l1 (0) = 1 .

, ,

dl d

= ( -

6e

2

(k - 3)

)



e

-2 -2

1- e

(17)

l - l1 = u


-2 ka t

(12)

l1 ( c ) = l1 (t c ) = 0 . , (13) , tc, , ..



u = 1 - e

= 1- e

-2

, = ka R ,

= 6k /(k - 3) .
, (11) (12)

tc = ln(cosh ) / k
= ( k - 3

a

(18)

)

/6.

l1 = 1 -

3 (k - 3)

ln

1+ u 1- u

(13)

(12) (13) l1 ( 0 ),
l1 1 - 12 k (k - 3)

>> 1 (, 2 ) tc

tc =

R (k - 3)k
6k
a

>> 1

(19)

l l1 +

12k (k - 3)

0

(14)

3. . 2 -

,

t .

t >> 1 /(2k a ) (13)
l1 1 - 6ln 2 (k - 3) -

t >> 1/(2k ) a (k - 3)

6

(15)

(15) . (13) 18

. 2. ka (D = 10-6 2/, L0 = 10-3 , k = 3 0 / ceq = 100).

. . , 2004, 3 (23)


. . , . .

, . ka. ceq (, , k = 3 0 / ceq ) (. 3). ka ceq . 4 5. , tc ka, / ceq. , .., ka=0, tc,0, (18)

. 3. k (D = 10-6 2/, L0 = 10-3 , ka = 0,1 -1).
2500
k a= 0 .1 s
-1
-1
-1

2000 1500
t,s
c

k a= 0 .5 s
k a= 1 .0 s

t

c ,0

= k0 2 R /12
,0

(20) ceq
,0

k0 = 3 0 / ceq

­

1000 500 0

0 .0

0 .5

1 .0

R

1 .5
=L
2 0

2 .0
/D , s

2 .5

3 .0

. 4. R = L0 / D ka (D = 10-6 2/, L0 = 10-3 , k = 3 0 / ceq = 1000).
2

tc -

. [12, 23]. tc tc,0, , , , , . r , .. r = ceq ,0 / ceq < 1 . ,

12. 0 10. 0 8. 0
t x 10 s
-5

k a = 0 .1 s

-1

k a = 0 .5 s

-1

k0 = 3 0 / ceq ,0 = 3 0 / ( r ceq ) = k / r t0 = tc / t

c ,0

k a = 1 .0 s

-1

-

6. 0 4. 0 2. 0 0. 0

t0 =
0. 0 2 .0 4 .0 6 .0
-5

tc 12 ln ( cosh ) 2 = r, tc ,0 ka k 2 R

(21)

c

8. 0

10. 0

k x 10

. 5.
tc k = 3 0 / ceq ka (D = 10-6 2/, L0 = 10-3 ).

. t t . -

- . . 6 t0 (21). , (, ka) , ka. , (, ceq). 19

. . , 2004, 3 (23)




0 .0 1 0 0 .0 0 8 0 .0 0 6
t
0

k= 50 k=100 k=200

0 .0 0 4 0 .0 0 2 0 .0 0 0

ka / . ( INCOCOPERNICUS, PL979098) ( 01-01-00276).
1 .0

0 .0

0 .2

0 .4
k a, s
-1

0 .6

0 .8

1.

. 6. ka k (D = 10-6 2/, L0 = 10-3 , r = 0,1).

2.

3.

4. , . , , ( , , , ..) . , , , . : ·
4. 5. 6.

7.

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

t t . · ka ( ka) / ceq. , ka . , / .

·

21. 22. 23.

·

J. Falbe, Surfactants in Consumer Products: Theory, Technology and Application, Springer-Verlag, New York, 1986. A. J. Ward, C. A. Miller, in book: Solubilization in Surfactant Aggreregates (S. D. Christian and J.F. Scameborn, Eds.), Dekker, New York,1995, p.237. P. D. Todorov, P. A. Kralchevsky, N. D. Denkov, G. Broze, A. J. Mehretab, Colloid Interface Sci. 245 (2002) 371. A. Kabalnov, J. Weers, Langmuir 12 (1996) 3442. A. Kabalnov, J. Dispersion Sci. Technol. 22 (2001) 1. D. J. L. Pak, L. M. Abriola, W. J. Jr. Weber, K. A. Brcskay and K. D. Pennel, Environ. Sci. Technol. 34 (2000) 476. C.A. Miller in Handbook of Surfance and Colloid Chemistry, (K. S. Birdi, Ed.), CRC Press, Boca Raton, FL, 1997. p.157. B.-H. Chen, C.A. Miller and P. R. Garrety, Colloids Surf. A 128 (1997) 129. B.J. Carroll, J. Colloid Interface Sci., 79 (1981) 126. A.S. Mayer, L. Zhong and G.A. Pope, Environ.Sci.Technol. 33 (1999) 2965. J. Weiss, J. N. Coupland and D. J. McClements, J.Phys.Chem. 100 (1996) 1066. J. Weiss, J. N Coupland, D. Brathwaite and D. J. McClements, Colloids Surf. A. 121 (1997) 53. J. Weiss, D. J. McClements, Langmuir 16 (2000) 5879. J.-C. Lim, C. A. Miller, Langmuir 7 (1991) 2021. J. I. Shaeiwutz, A. F. C. Chan, E.L. Cussler, D. F. Evans, J. Colloid Interface Sci. 84 (1981) 84. D. Sailaja, K.L. Suhasini, S. Kumar and K.S. Gandhi, Langmuir 19 (2003) 4014. P. Taylor, Colloids Surfaces A: Physicochem. Eng. Aspects, 99 (1995) 175. J. Soma and K. D. Papadopoulos, J. Colloid Interface Sci., 181 (1996) 225. B.A. Finlayson and I.E. Scriven, A Review. Appl. Mech. Revs., 19 (1966) 735. L.A. Kozdoba, Methods of Solution of Non-linear Heat-transfer Problems, Nauka Publishing House, Moscow, 1975 (in Russian). .., .., . 8 (1981) 1705. .., .., . 8 (1982) 239. V. V. Ugrozov, A. N. Filippov, C. A. Paraskeva, G. N. J. Constantinides and V.M. Starov, Colloids Surf. A. 239 (2004) 129.

20

. . , 2004, 3 (23)