Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.library.biophys.msu.ru/rubin/1020411.pdf
Дата изменения: Wed Sep 1 16:15:16 1999
Дата индексирования: Mon Oct 1 20:00:50 2012
Кодировка:
XI

,

. .
x 1.
( . )

, . , -

01 . ,

,

.

, (g | ,

l ' mk T =g (XI.1.6), m | , ,
, , .

p

01 100 . . .) . . | , : . 01 -

,

U (x) D ( x)
. ,

x
, .

x.
,

D(x),|


x 1.

(

)

299 , -

,

.

U (x),

. XI.1 (
x

):
Ux

-

. XI.2

a|

, , e|

( )|

U (x) = ajxj1=b ( H. Frauenfelder, G. A. Petsko, D. Gsernoglou, 1979):
b
1

|b

1

2

| b = 1=2

3

|b

1

,

(

. XI.1). . , .

,

.

U (x)

,

,

U (x), U = mw2 x2 =2 0

(XI.1.1) ( . x 2 . IX),

w0

|
w

k T=

~

T = 200 K 3 1013 ;1 . U (x)
a

.

U (x)

jxj

1

=b

(XI.1.2)

b

= 1=2

.


300 . XI.2

XI.

,

b

, , . VII) (.. , , . , .. .

, 1981), , . . (XI.1.3) , (v = dx=dt | x, -

( . x1
.

, .. ,

,

,

x hmv2 =2i = k T =2
: , ,

h:::i
1. .

).

U (x), F
,

= ;dU (x)=dx: , -

m| mw2 102 / 2 0 2. ,
g

U (x) (XI.1.1), , F = ;mw2 x 0 ( 100 . . . = 1 66 10;22 ) w0 | (. 1012 ;1 ). 12 ;1 . w0 10 , v = dx=dt F = ;g(dx=dt)
.

(XI.1.4) (XI.1.5) -

|
h

,

(

)
g

= 6pbh

(XI.1.6)


x 1.

(

)

301

b ( 01 1 ( . (VII.1.11)). ( 3. ,

)|

b 01 ) F (t) =
X
i

g

1015 . . ./ .

h

10;3 (XI.1.7) ( . -

F (ti )

ti |
),

.
d2 x + g dx + @U = F (t): dt @x dt2

(XI.1.8) , -

x(t) (XI.1.8). F (t). .
. . x(t), : 1) x(t + t), t 2) t 3)
f(t
.

. |

xx _
f(t)

x t:
) = hx(t)x(t + t)i: ,

x(t), t, (XI.1.9)
f(t) t,

t.
.
f(t

,

x(t) x(t + t) |
t

(XI.1.10) hx(t)i = 0 (XI.1.11)

!

1

) = hx(t)x(t + t)i = hx(t)ihx(t + t)i = 0

,

, f(t) x(t) x(t + t).

hx(t)i = 0.
t

=0
f

(0) = hx(t)2 i

f(t

)

t,

.


302
t

XI.

,,

t=0

t

= t,

hx2 (t + t)i = hx2 (t)i
f

hx2 (0)i = hx2 (t)i:
(XI.1.12) (XI.1.13) (XI.1.14) , (XI.1.8)

(t) = hx(0)x(t)i:

f t
c

|

t (t) = hx(t)x(0)i hx2 (0)i exp(;t=tc ) , x . . t x(t)]2 = 2 f(0) ; f(t)]: t,
,|
1 Z
0
f(

x(0) ; x(t)]2 =
(XI.1.14) , (. ), , . F (t) | f(w

, (XI.1.13)
+

,

)=2

2 t) cos wt dt = m2 (w2 ;kw2Tg 2 ) 0

g2 w2

:

(XI.1.15)

1. 2.

f(t

)

-

f f

(XI.1.15), (t) = k T =(mw2 ) exp(;t=tc ), 0

k T =(mw2 ) = hx2 (0)i. 0 w0 g=(2m)
(XI.1.16) (XI.1.17)

(t) = k T2 exp(;t=tc ) cos w0 t tc = 2m=g mw0 w0 g=(2m) k T exp(;t=t ) t = g=(mw2 ): f(t) = c c 0 mw2 0 k T =(mw2 ) | 0 k T:

hx2 i = k T =(mw2 ) a 0
(XI.1.1), (XI.1.3).

(XI.1.18)


x

1.

(
(XI.1.16)
f(0)

)
(XI.1.17) :

303

t=0
(XI.1.19) , (XI.1.20) (XI.1.21) ( .2.32) . -

= k T =(mw2 ): 0 (XI.1.15), (XI.1.16) (XI.1.17) (XI.1.14),

x(t)]2 = hx2 i(1 ; exp(;t=tc )) a

t

c = g=(mw2 ) 0
tc

( .2.27).
t

x(t)]2 = hx2 i(1 ; exp(;t=tc ) cos w0 t) a (XI.1.20) (XI.1.21) (XI.1.16) (XI.1.17)
c = 2m=g ,

= 2m=g:

,

w0

.

tc

(XI.1.16)
g tc

,

(XI.1.16)
t

t

. ,

t

c

.

c

!

, 0. (XI.1.17) .
g-

x(t) x(t + t)
. . ,

x(t) x(t + t)
,

, , , (XI.1.22) ;|
t

c = g=(mw2 ). 0

(XI.1.16) (XI.1.17), ,
e|

.

, (gh

g

-

A(t) k|

)
i

.

:

1 A(t) exp iwe t ; ikx(t) ; 2 ;t
w

, (
g-

;t = ~ (X.2.20) x(t) | ) . .
g

, ,

-

,

-


304

XI.

t g(w) =
;'
Re
p

1 Z
0

: exp ; ; t ; i(w ; we )t ; 12 2 2l
l

x(t)]2

dt

(XI.1.23)
w

0 7 107 c;1

t.
(X.2.27)),

= l=(2p) = 0 013

57 Fe we |

x(t)]2 | x(t)]2 x(t)]2

| -

(X.2.23), (XI.1.21) (X.2.28), (XI.1.20). :
+ Z

2Dt ( . (XI.1.23)

1

;1
Z

g(w) dw = 1:
g-

f0

(XI.1.24) (XI.1.25) | (XI.1.26) (. -

f0 =

g(w) d

w

jw ; we j ;:

(XI.1.21) (XI.1.23), f0 g=m ;, g=(2m) w0 ( . . ): f 0 (T ) = exp(;a2 ) a2 = hx2 i=l2 ). (XI.1.25) a ( . (X.2.26)). f (T ). (XI.1.25), f 0 (T ) hx2 i T , (XI.1.18), a : f 0 (T ) = exp ;k T =mw2 p2 ] 0 0 f . f 0 (T ) . X.21). , f 0 (T ) g=(2m) w0 . (XI.1.20) (XI.1.23), (XI.1.24), ,
0

f 0 (T ) = 1 ; a2 exp(;a2 ) y = exp(;t=tc ) = exp(;mw2 t=g), 0

Z1

0

yn(T ) exp(a2 y) dy

(XI.1.27)

n(T ) = g(T );=(2mw2 ) = tc =(2t ): 0


x

1.
, ,

(

)

305 -

f 0 (T )
t g

f0 (XI.1.18) hx2 i a tc = g=(mw2 ) 0
(
tc l

' 10;7 .

T,
),
t t

,
g

.
t

.
h

, :

(T ), ,

a2 (T ),

c = g=(mw2 ) = 6pbh=(mw2 ): 0 0

hx2 it=tc a
h(T e

c l2
t

t

f 0 ' 1.
(XI.1.28) (XI.1.29) , . XI.3
t tc t
1

t=t :

x(t)]2

-

) exp(e=k T ) ,
h

| , :
t

c

exp(e=k T )

t

c

t

{

,

f0 1 g(w) . f 0.

t

(XI.1.26), x(t)]2 l2 a2 .

f 0 exp(;a2 ).
t

c

t

|

t

t, ( ): 10;7 2 | t ' 10;7 3 |

g(w)

t

10;

7

( . XI.3). , .

(; + a2 =tc ). c.t ,
t

,

c

t

,
t

f0

c

xa , ' 10;7 .

,

g


306 (XI.1.27) , . 300 K.
e, e

XI.
. | . , , , 10 (1 21 / ) , Fe . -

Fe .

b 05 (10;3 ), (0 1 { 1 ). f 0 (T ), xa = 0 035 ( x0 0 001 0 002 ). f 0,
, .

01

,

. .
x 2.

,

, ( 0 05 )
t

(.

f 0 ' 1.
, ;) 20 20 . .

).

,

,

f0

(..

f0 )

l > l,
(XI.2.1)

hf 0il l =
n

1 2

1 + ;;=2 n ;! 2 (n +4

= (k T =h) exp(;E=k T ) | . .
t

f0
,

E
-

,

,

l<01

,


x

2.

307

l ' 0 005
,

, . . l < l,

l

l

. . ,

, ( . x 8 . XIII). ,

f 0 (T )
(.. ). , , ( . x 1 . X). R2, ,
w0

, 1012 c;1 ,
g-

E

02

Fe, hAi 0 05 (0 013 ) , : f 0 = 0. ,

05 ,

, . , -

. .

f0

Fe

W F| f =F n| T,
, .
e

= 1 + exp( F=k T )];1 : : =E

T (XI.2.2)

;F
S| . ,

; ne + nT (S
,

;S

)

(XI.2.3)

E

-

F (T ) = 0,

T = (ne ; E )=(n S ).
(XI.2.4)

ne ; E

f 0 = 1 ; exp( F=k T )];1 : (XI.2.4) = 0 33 n S = 20 . . (XI.2.3) ,
, , |

. .

-


308 ,

XI.
, . ( . x 1 . XI) . -

F

.

S

S ' 20 . .
x 3.

.

, . 420 (. 0 02 , / ). . . . ? . VIII, IX : , , , , | , 10;15 .

, , 10;3 . 10 , |

04

103 .

( 10;13 ) . . , -

,

,

(IX.1.1). , .

(. , 10;3 , 103 , -

. IX.10). . (1 = 10;12 )

.

.

N

N ,


x

3.

309
d2 r i dt2 = Fi (i = 1 : : : N ):

:

m
.

(XI.3.1) , Fi | . . -

, mi |

10;9 c. .
3 2

:

D i2 k T = m2vi

E

(XI.3.2) . :
1 0 )2 + 2 A0 ; r12

(.

. VIII

, IX), -

U (r1 : : : rn ) =

1 Xk b 2

(b ; b0 XA + r12 ,

X )2 + 1 k ( ; 2 X B 1q ; r6 + qDr2 +

X

C0 : r10

kf 1 + cos(nf ; d)] +
(XI.3.3) ) , , (XI.3.4)

, | . ,

,

b| r|

.

, :

(

i-

f

|

, -

: Fi = ; @U (r1@r: : rN ) : i (XI.3.3) , :

) ,

,

.

( , .. .

, -

,


310 . ,

XI.
, : , . . . ( ) . , -

.

( ,

, , , , ,

,

, , . ,

,

). .

,

. ,

-

(

,

).
-

,
-

,

,

.

-

-

,

-

) , .

(

-

-

-

, ,

. , . { 100 .

. . -

-

Ca-


x

3.

311

T = const.

( . .

) 0 01 { 0 1 , .

, -

, .

.

, | 454 | . . . 10;15 . | , , . : C+ 100 . , ( ). , ,

58

() 1977 . ,

..

-

. -

b

.

, ,

a

-

. ,

,

( . x 4 . XI). B5 C{ .

C{ . . , .

.

-

.

.


312

XI.
, . , , . , . . , , ,

.

.

,

(XI.1.9) { (XI.1.15). (

t. t t0 = t + t.

x(t)

. .

x, ).

x(t) x

x

-

hx(t)x(t + t)i:
,
t: f(t

,

x

t. t. (XI.3.5) , ,

) = hx(t)x(t + t)i = hx(0)x(t)i = f(;t):

,

t.

, :
f

,

f(t)

x1 x2 : : : xn

.

ik (t) = hxi (0)xk (t)i:

(XI.3.6) ,

,

xk : hxi (t)xk (t + t)i = hxi (t + t)xk (t)i:

xi


x

3.
. . . , , . .. (1981). 300 K. . . 100 . , . . (60 , , (63
;3 ).
( ).

313 , . , -

.

,

. ,

.

. ( 35 . , : 0 21 , ,
a

,

)

.

, -

306 K.

-

0 29

-

. 0 075

;3 ),

(

0 12

). 10 { 20 ,

.
y

a

-

0 06 ( . x 3 . VIII) b-

a

-

f

.

7{9

w

,

1{2 . ) .

( -


314 ( . x 3 . VIII),

XI.
, . . . . . . , -21
2 I d 2 + gd + dt dt

. , (2 { 15 ). (4 { 16 / -

20

96

60 2{5

/ )

( 20 )

a

-

, ( . x 1, 2 . IX). = F (t)

-21

(XI.1.8) (XI.3.7)
g

a

(t)
a

I = 7 5 1015
.

| ,

F (t)
-21, ,
f

|

2/

|

. XI.4

, -21

.

h i.

(t) =

h

(t) (0) (0)]2

i

. XI.5.

, -21.


x

3.
0 07 . , . XI.4 (I ), F (t) |

315 .

F (t)

-21 (I ) (II ) 9 8 ( M. Karplus, B. R. Celin, J. A. McCammon, 1979) = ;h i. 21 . , (XI.3.7) a = 5 5 104 = g=a = 0 2 . , /(

. XI.4

. XI.5

(I )

(II ) ( M. Karplus, B. R. Celin, J. A. McCammon, 1979)

2

t

) g = 0 11 -35, . , ,

/(

),

, , . .

-


316 0 5{1 0 . , .

XI.
-35 , -

. XI.6

,
.

,

COOH-

NH.

. (CH3 NH{) (

(CH3 CO{), . XI.6). -

(..

). :
f(t

) = exp(ia(t)) exp(;ia(t + t)) ; hexp(ia(t))i 2

(XI.3.8)

a

| .

t t + t.

Re f(t), .

:
f( a b

|

(

t) = expfi a(t) ; a(t + t)]g expf;i b(t) ; b(t + t)]g ; ; expfi a(t) ; a(t + t)]g expf;i b(t) ; b(t + t)]g (XI.3.9) t t + t. Re f(t). , a b f(0) = 0. , ab ) Re f(t) .


x

3.
. XI.7,
t

317 . ,
a t b

,

-

. XI.7 cos , cos
da da

cos

db ab

( ) -

, .
.

. , .

,

(cos db) .

. XI.8 { 12

-

(.. . . XI.13 { 16 ,

). . , , , , . XI.9 { 12. , ,

.

-

kT .
. , -

.

,


318

XI.

. XI.8 ( 5000 , T = 1000 K. 10 ;1 .
-

(XI.3.8)

)

f

(

. XI.6)

18.


x

3.

319

. XI.9
1

(XI.3.9)
2

y
-

| .

| 3| 5000 , T = 1000 K. 10 ;1 .

(

1

f

2(

. XI.6) )

.

-

18.


320

XI.

. XI.10 (
1

(XI.3.9) ( )

y

1

. XI.6)

y

2 -

|

2

| 3| 5000 , T = 1000 K. 10 ;1 .

-

. 18.

-


x

3.

321

. XI.11
1

(XI.3.9)
-

|

2

| 3| 5000 , T = 1000 K. 10 ;1 .

(

y

1

)

q1

. 18.

-


322

XI.

. XI.12 (
1

(XI.3.9) ( )

y

1

. XI.6)

q1

-

|

2

|

3| 5000 , T = 1000 K. 10 ;1 .

-

. 18.

-

,

, (.. ,-

. ). , . XI.17 . -

. . , , 10;7 . , , , -

,

. ( 10;11 ) . , 10;1 . , ,


x

3.

323

. XI.13
-

(
;360 360 18. . XI.9

)

f

y

) (

y

)
.

(
10 ;1 . -

5000 , T = 1000K.

.


324

XI.

. XI.14
-

( (
;360 18.
360

)

y

1

)
. . XI.10

y2

(

y

)

5000 , T = 1000K.

10 ;1 . .


x

3.

325

. XI.15 (
-

( )
;360 360 18.
. XI.11

q1

)

y

1(

y

)
. 10 ;1 . . -

5000 , T = 1000 K.

.


326

XI.

. XI.16
-

( (
;360
18. 360

)

y

1

)
. . . XI.12

q

1(

x

)

5000 , T = 1000 K.

10 ;1 . . -


x

4.

.

327 -

. .

. XI.17 )
,

(1 )
,

(2 )
. ,

(
-

-

,
x

. , .
4.

,
.

-

, CO ,

.
.

, , Mb . , 05 . . . XI.18 ,

.


328 Ne2 .

XI.

.

04

.

.

. XI.18 ( Kendrew et al., 1959) , -64 | , .

.

-

CO , . ( 13 000 . , III, III, .
;1 ),

, (

. III) , , . -93 ( , . XI.18). (

MbCO MbCO . 423 . ) 760 FF-

III


x

4.

.

329 CO 13 000 ;1 . 760 . ,

CO

. XI.19 (. ). 90, 45, 10, 0 , ( Brooks, Karplus, Pettitt, 1987). . , , / , , . .

;3

/

A

{

.

xy

z

=32A

.

III . XI.19

Mb. E7 E11. , , ,

,

-

400

,

.


330 . . ,

XI.

, Mb, CO). . CO :
K

200 K .

. XI.20. , (10 K { 160 K) ( ,

. 10;6 c

CO Mb CO 1 { 10 .

-

Mb + CO

!

, MbCO ,

= 0 exp(;
K

E=k

T:

)

, MbCO. . CO ,
r

,

(

. XI.20) . III

-

,

CO . MbCO 100 Mb Mb .
hn MbCO ;! Mb
:

Mb. (1 = 10;15 ), -

MbCO .

Mb ( III
T<

13 000 CO,

;1
x

III Fe2+ Mb, . .

100 { 200 Mb.
r

;1

-

50 K) Fe2+ ,
r

,

.

,


x

4.

.

331

. XI.20
| | | CO Mb N (t) = (1 + t=t0 );n , n t0 | CO Mb P| ; !; K K|

, 1990)

-

(

T < 160 . , T > 190 CO Mb. A | MbCO B | CO S| K| -


332 , ..

XI.

,
x

CO + Mb

!

MbCO Mb

-

.

. XI.21 Karplus, Pettitt, 1987)
. 90, 45, 10, 0, ;3 . / { I{IV: .

{
A. ,

xy

(

Brooks,
-

,

Mb .

Fe2+

(

T

50 K) CO Mb

CO

.
T>

. X.21). Fe2+ F. . , ,

180 { 200 K, (. , -93 116 ;1

III

Mb. Mb , ,


x

5.

333 300 K,
T>

100 K

. , 20

CO

T>

200 K ( CO ,

. XI.20).

, ,

, Fe2+ Mb (x 3

. XI).

, / ) . , . 400

-E7, /

-E11

. . XI.21 (

/

8 { 10 (

-E10. . . . . -

. XI.20, ).

160 K

| 10 / . 160 K .

T

300 K . , .

. ,

210 K . ,

.
x
5.

. , , , .. .

,

, -

.

.

,


334

XI.

. ( . . , . , 0 001 { 0 01 . .
K

, ,

,
b

). , a. , , . ,

, -

x

a

= 105 { 106

/,
t
xa >

, 10;12 . . ,

w

1013 ;1 . . ,

0 01 , , (

,
G

0 01
#. 0

,
x

,

, . XI.22).

a

&1A
.

xa

(x 1 . XI). , , . .. , , | , ,

| 1 .

0 03 { ,


x

5.

335 ) . , .
a-

,

(

-

. XI.22 (
. ,

)
G# ,

,|
,

|
, .

,

. ,

,
b

a

-

,

b-

, .
b-

, ,
a

-

.
hp

, ) . .

.

, , , (

100 , . -

. , ,
a-, b

-


336 ( . XI.23). ,

XI.

, .

. XI.23

. . . . . .
#=a 0

,

. . ( ) ,, {
hs

,

.

, -

,
hs

,

,

,

,
0

.

k

0

R

0 06
k

Rs

.
G

k =k

= exp(;

G

,

G

#| s

# 0

=k T

)

h; s

a
R

,
a

R

s

|

0 , R0 | -

,

-

= (0 1

(

R =R

s

)2

R R

0< 0>

R

s

Rs :

k

0

1013 ;1 .

-


x

5.

337 ( , . XI.24). . , -

. XI.24 | |
2

()
2

hs , .

(
2

)

()
,
1, 1 2

. .

.

1

.

.. . .

,

. ,

, .

. -

,

,

,


338 .
b

XI.

, . . ,
a

,
a

. , , +.
a

, -

. , ,

. . .

,+
a

a

!

b

,

, -

a

,

.

:

b

!

a

.

, . . , . . ,
0,

.

,

. , -

,

,
x

, 0.

,

. -

x

. . , , , , , . , , -

, CO , , ,

. ( ).


x

5.

339 . , , , , , ,
.

01 .

( . . XIV). ,

. ). , -

( . XIV). ,
Uq

( ), (

q

, |

,

.
N

, . ,

,

, -

. . . , {
@P (x t @t

,

,

). (XI.1.8)
)

( . . ,

, -

( . XIII.11.1)
)

=

@ @x

Dx

() ]|

@P (x t @x

+

1
k T

Pxt

()

@U (x) @x

(XI.5.1) . -

Pxt t

( )| ( ) = 0 exp ;e( ) , . . e( ) |
Dx D x

x =k

T

, {

(XI.5.1)

. . . ,

T


340 . . . ( . XXVII { XXVIII).
Uq

XI.
Uq

()
e2

, ,
Ea

= e2
c

=k

T

. ,

Ea

-

( ()

T < Tc

). .

Tc T >T

E

=

N RT

E

Uq

. , ,

() .

, ,
x

, . . . , .
x
6.

rx (e

)

-

1980).

, (

. , , (

1980 . (Englander, Kallenbach, Heeger, Krumhansl, Litwin, , ), ( . XI.25). , ( . ), ).


x

6.

341 ,
ftt

-

;

fzz

+ sin f = 0 ,

(XI.6.1)

.

.

f

()
zt

. XI.25

()

() , , . , , , , .
;1 .

,

XI.1. , ,

. . , . ,

,

, ,

, ,

/ .

, ,

. . ,

, -

, ,

, . XI.26 (Yakushevich, 1998).

.

,

,


342

XI.1. , : , (A ' 5 7 A) A ' 10;1 A E'06 | / / , , , , , , , , , , , , , , XI.

E'2 5 :

,

E ' 5 20

:

/

pH / ,

, ,

,

-

E ' 10 50 : , A=2 3

,


x

6.

343 . XI.26). ( , . : | . ), : , , . , (
1

. XI.26

( Yakushevich, 1998)


344 , ,

XI.

, , . , , 38. . 8 , . , , . . , . , , , (1991) , (Powell et al., ( , . ,

,

, :

.

, : | , , , , . , ,

.

( , , .

)

,

.: Phys.

36

C0 -

C0 -

,
Rev.

, A-35, 1987). , . ,

.

)

. . ,

,

. , .

(.. . ,

) , .

.

-

,


x

6.

345 | . .
fn

,

, :
n-

|
n

,-

n-

|

2 I ddtf2n = K (fn+1 ; 2fn + fn;1 ) ; mgh sin fn

(XI.6.2) , I| , m h| .

,K|

,
zn

!

, z fn (t)

,g|

!

f

(z t) (XI.6.3) .

I0 |

, V0 sin f |

I0 fn ; K0 fzz + V0 sin f = 0 , K0 | ,

. XI.27

() ( ) ( Yakushevich, 1998) f

, ,

-

. XI.27, ,

(z t) = 4 arctgfexp(gx=d)g:

(XI.6.4)


346
g

XI.

= 1 ; Iv2 =K0 a2 ];1=2 , x = z ; vt, v | ( ), d = (K0 a2 =V0 )1=2 , a | . , . XI.27, . , | . , .
H =T +V T|
(1)

, . . . | , : + V (2) : . ,V , ,
(1)

-

.

(XI.6.5) V (2) | (XI.6.6) .. , , -

. :

, .

K k|

f1

2

| (XI.6.6)

I f1tt = Ka2 f1zz ; kR2 2 sin f1 ; sin(f1 + f2 )] I f2tt = Ka2 f2zz ; kR2 2 sin f2 ; sin(f1 + f2 )]: , a| . v,
x

= z ; vt: (XI.6.7) v. -

f

1

= ;f2 = 4 arctgfexp q(x ; x0 )g: ), , (XI.6.7) . G{C

(

. XI.28 , .

,

A{T

,


x

6.

347

. XI.28

(XI.6.6) ( ) ( ) ( Yakushevich, 1998) G{C . . XI.29.
S2

, ,

.

. XI.29 (S1 S2 )

S
2

P S2 ,

1

S

P1 P2 . ,
1

S1 P
2

(P1 P2 ) ( Yakushevich, 1998)
P1

.

, .

S1

. ) -

,

S

1

S

,
2

.

( , ( .
P2 .

, )

S2 ,

:

,

.


348

XI.

. XI.30 1998):
() , () ()

(
() ,

Yakushevich,
-

( (

,

c

) .

) , ( , T.

. ), (
C, P,

-

,

. . . . XI.30). -

R1 R2 R

P,
3

: , -

. . . , . XI.31
T

, , . : . , ,

,,
C

, | . -

,


x

6.

349

. XI.31
P, C T |

,

( Yakushevich, 1998)
(i + 1)S| i-

,

,

R1 , R

2

R3 |

, , . ,

R

,

.

, -