Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc15779/doc.pdf
Дата изменения: Mon Oct 29 13:08:22 2007
Дата индексирования: Mon Oct 1 20:38:55 2012
Кодировка:
.. () . - NEW USING OF ASYMPTOTICAL METHODS FOR HYDRODYNAMICAL STABILITY PROBLEMS Shatrov A.V. Kirov (This article deals with two points Pade-approximants (TPPAs) and their applications to hydrodynamical stability problems. The TPPA method presented in this work can be applied to calculation the oscillatory boundary layer growth over the top and battom plates of rotating channel) [1-8] , . , , , . , .
184


.. -- -10, 2002, .184-185

, [5-8]. [5], , . -, , [9-12]. , , - [9-11] . () , . [13], . [3,4] . [13]. 1. . Oxyz Oz. , , Ox. , , , () . : u, v, w ­ Ox, , Oz; v ­ ;
P* = P - 1 2 x 2 + y 2

(

2

)

- ;

- ;
185


­ ; W0 ­ . w v + =0 (1) z y
w

w w 1 P * 2w +v = 2u - + 2 z z z y u u 1 P * 2u +v = -2w - + 2 z y x y

(2)

w

(3)

, . (2) (3) 1 P * (4) - =0 z (5) = 2W0 x (4) (5), (2) (3)
-
w

1 P *

w w 2w +v = 2u + 2 z y y u u 2u +v = 2 (W 0 - w) + 2 z y y

(6) (7)

w

(6) (7) . y = 0 : u = 0, v = 0, w = 0 (8)
y : u 0, w W
0

(9)
186


.. -- -10, 2002, .184-187

z = z 0 : w = w0 ( y ), u = u 0 ( y ) z0 ­ , (6)
w 0 = W 00


(10)

. ­ (10) .

w 1 - W 0

dy

2

(11)

- w)2 , (1) (6) , ,

(W0

w(W0 - w z

[

)

2

]

+

v(W0 - w y

[

)

2

]

= -4u (W0 - w) - 2 (W0 - w

)

2w y 2

(12) (12) 0 , , (11)
d ( 0W dz
3 0

)

w w = -4 u (W 0 - w)dy - 2 y dy + 2W 0 y 0 0


2

y =0

(13)

: = w, = -v y z y z w = , = , ( , ) = , W0 W0 0 (z )
u , ( , ) = = d W0 W0 0 0 (6), (7), (13) (8), (9) (10)

( , ) =

187


2 F + 2 f = f + 2 - 2

(14)

2
2

+

F + 2 f (1 - ) = f - 2

(15)

f=

02 ,
2 0

df = F = -8 f (1 - )d - 4 d + 4 d 0 0

(16) (17) (18)

= 0 : = = 0, = 0 : 1, 0 = 0 : = 0 ( ), = 0 ( ),
f 0 = f (
0

)

(19)

2. . . Oz. 2.1. - . ( ). (14) ­ (16) , , . f , . u t = u xx + f (u ) , [11]. , . f. ,
188


.. -- -10, 2002, .184-189

. , « », f . , () = 0, f const , , df 0 F 0. d (14), (15)
2 + 2 f = 0 2 2 + 2 f (1 - ) = 0 2

(20) (21)

~ ~ = 1 - exp(- ) cos ~ ~ = exp(- ) sin ,

(22)

~ = 0 , = - . (22) [1]. , , () . . (14), (15) , , , , , , () 0. f 0, f ~ (14) (15) (17), (18) ( () , () = 0). 189


. 2.2. ( ). . , , f = 0.

+ +

= 0 2 = 0 2


(23) (24) (25)

= d
0

(17), (18). (23) ­ (25) , 1. (), , , (19). ( (17))

= 2a 2 + 3a 3 + 4a 4 = 2a 2 + 6a 3 + 12a 4 2 = 6a 3 + 24a 4 + 60a 3
2 3

= a 2 2 + a 3 3 + a 4 4 + a 5 5 + O(
4 5 3 5

) + 5a + O( ) + 20a + O( ) + O ( )
6 5 4 2 3

(26)

... (26) (23)
6a3 + 24a4 + 60a52 + 1 (a22 + a33 + a44 + a55 ) (2a2 + 6a3 +12a42 + 20a53 ) = 0 2

a 3 = 0, a 4 = 0, a 5 = -

a 22 , 60

190


.. -- -10, 2002, .184-191



~ 2 a 2 -

a 22 4 12 a2 ~ 2 a 2 2 - 2 60

(27)
5



~ 1-


A exp(- 2 + c 2 - c

)

(28)

c = (1 - )d
0



(29) (30)

a2 =

1 (1 - )d 2 0

, (23) exp 2 - c , , 0 ,

(

)

A = 2a 2 - - 2 + c exp( 2 - c )d 2 0

(31)

. ... Gi 2 3 4 5 = 1 + b2 + b3 + b4 + O( ) (24) 1 b2 = 0, b3 = 0, b4 = - a2 1 . 24 ,
1 a2 1 24

~ 1 -

(32)

191


B exp(- 2 + c 2 - c ~ - B exp(- 2 + c )

~

)

(33)

(24) ) , exp( 2 - c ) ,
B = - 1 + - 2 + c exp( 2 - c )d 0 2

(34)

2.3. - - , , , , Gi Ge , 2, , , , . . ,

a = 1-

(1

+ A 3 ) exp(- 2 + c 1 + + + 2 2 + 4 4

)

(35)

Gi a2 2a 2 - 2 4 (1 + 1 + 2 2 + 4 4 ) = 1 + 1 + 2 2 + 4 4 - 12 ( 2 - c )2 ... - (1 + A 3 )1 - 2 + c + 2 : 1 = c + 2a 2 c2 . 2 = 2a 2 (2a 2 + c ) - 1 + 2 Ge

4

+ A 3 )(2 - c ) = A(1 + 1 + 2 2 + 4 4 ) 4 = 2. , - 192

(1


.. -- -10, 2002, .184-193



a = 1-

c2 1 + (2a 2 + c ) + 2a 2 (2a 2 + c ) - 1 + 2 + 4 2

(1

+ A 3 ) exp(- 2 + c

)

(36)
4

, (32), (33) . (23) ­ (25) , () m. - (37) a = m exp(- 2 + c ) 0 + 1 Gi c - 1 0 = m , 1 = m . 1 1 m ( m ) = 0 , (15)





( )
m

= f (


[

m

)(2

- (

m

)) - 2]

(38)

,
a ( ) = a d
0

(39) (40)

a ( ) = a d
0



(6.40),


0



a d = 0

(41)

- (36) (37) (29), (30), (31), (38), (41)
193


2.4. . (14), (15). (42) ­ (46) : 1). (0), (0), (0) , , (0 ) (0 ) 2 (0 ) 2 (0 ) , , , ; 2 2 2). f(1), F(0) (45), (46), ; 3). (42) ­ (44), (1), (1), (1); 4). - (1) (1) a , a , , 1.-3., . «» Maple-6.1, , FORTRAN-. q ~ ~ * = = (1 - a )d , q* = = a d , = 0 , 0 0 =


a

- . -

* q* , . ( ) * q* (22) . (0 < 20) * q* (42) (43). , = 20, 1%. ,
194


.. -- -10, 2002, .184-195

, , Oz . , . , . |-2u| , . (22), . 3. . , ­ , - . = 0 f = f0, = 0(), = 0(), * ( ) - 0 ( ) * ( ) - 0 ( ) *, *, ( ). 0() 0() : , -, (42) ­ (46) f = 0 f0 f. f (16) (22) 0,1083. f0 () () . 0 = 0, f = f0. , f0 = 0,1050; 0,1100 . , 195


. ( f0 = 0,1290, 0,1390) 0(), 0() «» ( = -0,1, -0,15). f0 = 0,1290 * q ** 0 ,, , , . f0 = 0,1390 f . , , 0() ( 0( ) < 0 ) , . , 0() ( > 0 =

s < 0 > s, s ­ ), , f0 > 0,1390 .
-00-4.0-125.

. 1. . . ., 1975, 304 . 2. Ludwig H. Die ausgebildete KanalstrЖmungen in einem rotierenden System // Ing. Arch., 1951, b.19, s. 296-308. 3. .. . ­ : 1981, . 190-235. 4. .. : . . . . .-. , , ., 1987, 351 . 5. .. // . : - , 2000, . 180-205. 6. .. , : . . . . .-. , , ., 1983, 170. 7. .., .. // , 1978,
196


.. -- -10, 2002, .184-197

.35, 1, . 87-92. 8. .., .. . // . , , 3, 1982, . 154-157. 9. .., .. . ­ .: . , 1988, 240. 10. .., .., .. , // . . -, 1937, .1, 6. 11. .. // . .-. . , ., . II. ­ , 2000, .26-27. 12. .. -- // . .-. . , ., . II. ­ , 2000, .31-32. 13. Kurosaka . The oscillatory boundary layer growth over the top and battom plates J. Trans of. ASME, Ser D, 1973, v. 95, No 1, p. 139-146.

197