| 26.12.06 00:09 |
Математический семинар Глобус, заседание 4 января 2007 г. |
версия для печати
В четверг, 4 января 2007 года, в 15:40 в конференц-зале НМУ, Б. Власьевский 11, состоится доклад: От березинианов к теории Колмогорова-Гельфанда и к обобщенным симметрическим степеням. Лектор - О.М.Худавердян (The University of Manchester).
Доклад основан на моей совместной работе с Ф.Ф. Вороновым.
Пусть A - алгебра функций на топологическом (компактном хаусдорфовом) пространстве X и V=A^* - пространство линейных функционалов на A со значениями в вещественных числах. Тогда подмножество в линейном пространстве V, состоящее из кольцевых гомоморфизмов, находится во взаимно-однозначном соответствии с точками пространства X. Это классический результат Гельфанда и Колмогорова 1939-го года.
Рассматривая суммы произвольных k-гомоморфизмов, мы приходим к подмножеству в V, которое находится во взаимно-однозначном соответствии с k-ой симметрической степенью Sym^k X топологического пространства X. Это было недавно доказано Бухштабером и Рисом. Суммы k-гомоморфизмов - это пример введенного ими понятия "k-гомоморфизма" (см. доклад В.М.Бухштабера в сборнике "Глобус", выпуск 2).
Рассмотрим в линейном пространстве V линейные комбинации \sum m_\alpha f_\alpha гомоморфизмов f_\alpha. Мы приходим к интересному понятию p|q-гомоморфизма, если коэффициенты m_\alpha - целые числа, где p-q=\sum m_\alpha и p+q=\sum|m_\alpha|. Мы вводим понятие p|q-гомоморфизма для произвольной коммутативной алгебры A с единицей, строим обобщенную симметрическую степень S^{p|q}A алгебры A и изучаем связь этих понятий. Главным инструментом нашего исследования является характеристическая функция R(f,a,z), вводимая нами для произвольного линейного отображения f из алгебры A. В случае если f(a)=Tr L(a), где L(a) - матричное представление алгебры A, R(f,a,z)=Ber(1+zL(a)). Здесь Ber - березиниан (супердетерминант). Это обстоятельство проливает свет на связь алгебраических свойств линейного отображения f с поведением функции R(z,f,a).
Предварительные результаты работы см. в arXiv:math.RA/0612072.
Последние обновления
|