Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1158447&uri=page3.html
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 12:31:32 2016
Кодировка: Windows-1251
Научная Сеть >> Радиолокация. Физические основы и проблемы.
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Посетите Сервер по Физике Обратите внимание!
 
  Наука >> Физика >> Общая физика >> Колебания и волны | Популярные статьи
 Написать комментарий  Добавить новое сообщение

Радиолокация. Физические основы и проблемы.

А. И. Козлов (Московский государственный технический университет гражданской авиации)
Опубликовано в Соросовском образовательном журнале, N 5, 1996 г.
Содержание

Что такое элемент разрешения

Казалось бы, мы имеем даже определенное преимущество по сравнению с наблюдением в оптическом диапазоне, где объект характеризуется двумя числами: яркостью (коэффициентом отражения) и цветом (какая-либо количественная характеристика цвета). Однако дело обстоит далеко не так. Прежде всего заметим, что в подавляющем большинстве используемых на практике радиолокационных станций (РЛС) измеряемым параметром является всего лишь одно единственное число - коэффициент отражения. Однако это не самое главное при сравнении с оптическими устройствами. Главное же состоит в следующем.
В любой рассматриваемый момент времени на входе приемного устройства формируются сигналы, порожденные радиоволнами, отраженными от различных целей, находящихся на одинаковом расстоянии R от точки приема. Прием отраженных радиоволн антенной в основном осуществляется в пределах некоторого телесного угла $\Delta \Omega$, для количественной оценки которого можно использовать два плоских угла $\Delta \alpha$ и $\Delta \beta$ в двух взаимно перпендикулярных сечениях этого телесного угла. (Величина каждого из углов $\Delta \alpha$ и $\Delta \beta$ определяется отношением $\lambda /d$ длины волны $\lambda$ к линейному размеру антенны d в соответствующих сечениях.
Таким образом, на выходе приемной антенны возникают токи, обязанные своим происхождением электрическим и магнитным токам, возбужденным падающей волной на прямоугольной площадке с линейными размерами $R\Delta \alpha * R\Delta \beta$, находящейся от антенны на расстоянии R. Принципиальное отличие оптики от радиолокации заключается в размерах этой площадки. Для больших наземных радиолокационных станций углы $\Delta \alpha$ и $\Delta \beta$ составляют десятки угловых минут, что соответствует отношению $\lambda /d$ порядка (3-5)*10-3. На расстоянии 50 км от антенны для этого случая линейный размер площадки составит величину порядка 400-600 м. В данном примере речь идет об очень больших и весьма редких антеннах. Для большинства же антенн сантиметрового диапазона отношение $\lambda /d$ примерно равно 0,03-0,05, что на порядок хуже приведенного примера. Для оптики при диаметре антенны всего лишь в 1 см искомое отношение составляет величины порядка 10-5, а поэтому размеры рассматриваемой площадки для оптики оказываются принципиально иными.
Не вдаваясь в подробности, а сославшись лишь на авторитет великого Рэлея, следует отметить, что все объекты, расположенные вдоль одного направления в пределах дальности, равной $c\tau /2$, будут восприниматься наблюдателем как один объект (здесь с - скорость света, $\tau$ - длительность зондирующего импульса). Для ориентировки проведем оценочный расчет этой величины. Если использовать "обычный" радиолокатор, то для него длительность импульса следует принять равной на уровне 1 мкс; это для искомого размера даст величину порядка 150 м, что весьма существенно.
Таким образом, все объекты, находящиеся в пределах параллелепипеда с размерами $R\Delta \alpha * R\Delta \beta * c\tau /2$ (этот параллелепипед носит название разрешаемого объема, или элемента разрешения) будут восприниматься как одна цель.
Из проблемы уменьшения этого объема вытекают почти все проблемы радиолокации.

Как улучшить обнаружение радиолокационных целей

Даже в рамках неизменного элемента разрешения имеются дополнительные возможности для улучшения обнаружения находящихся там радиолокационных целей. К достаточно эффективным следует отнести поляризационные методы. Их суть сводится к следующему. При изменении вида поляризации излучаемой радиоволны происходит изменение мощности отраженной радиоволны. Ясно, что всегда найдется такой вид поляризации зондирующей радиоволны, при которой отношение мощностей радиоволн, отраженных от исследуемой цели и фоновых объектов, находящихся в элементе разрешения, будет максимально. Теоретические расчеты и экспериментальные результаты показывают, что увеличение радиолокационного контраста для многих типичных ситуаций в среднем составляет 5-8 децибел, достигая в отдельных случаях 20 децибел и более. Существенный рост контраста дает возможность соотносить измеренные элементы матрицы рассеяния с исследуемой радиолокационной целью.
До сих пор речь шла о неподвижных по отношению к радиолокационной станции целях. В случае их движения отраженный сигнал (эффект Доплера) имеет другую по отношению к исходному сигналу частоту, которая отличается от основной частоты на величину, пропорциональную отношению радиальной составляющей скорости цели к длине волны. Если в элементе разрешения движущейся является только исследуемая цель, то, осуществляя прием отраженных радиоволн на частотах, не совпадающих с частотой зондирующего сигнала, можно разделить сигналы, идущие от исследуемой цели и от окружающего его фона. (Это направление получило в радиолокации название селекции движущихся целей (СДЦ). Системами СДЦ снабжены очень многие современные радиолокационные станции (РЛС).)
Наконец есть еще один, хотя и достаточно экзотический, метод повышения радиолокационного контраста. Речь идет о радиолокационных целях, отраженный сигнал от которых содержит частоты, кратные по отношению к частоте зондирующего сигнала - 2f0, 3f0 и т.д. Таким свойством, как правило, обладают объекты, имеющие ржавчину, трущиеся элементы, контакты и т.п. Если другие объекты такими экзотическими свойствами не обладают, то соответствующий радиолокационный контраст может быть увеличен на десятки децибел.
Вновь вернемся к элементу разрешения. Для уменьшения его размеров по дальности есть только один путь: уменьшить длительность зондирующего сигнала. Современные РЛС специального назначения могут формировать импульсы наносекундной длительности, что обеспечивает разрешение по дальности до десятков сантиметров. Если уменьшение длительности импульсов связано с техническими и конструктивными ограничениями, то проблема уменьшения горизонтального и вертикального размеров элементов разрешения, то есть углов $\Delta \alpha$ и $\Delta \beta$, наталкивается на физическое ограничение, связанное с тем, что углы $\Delta \alpha$ и $\Delta \beta$ пропорциональны отношению $\lambda /d$. Переход от сантиметрового к миллиметровому диапазону волн дал возможность сократить линейные размеры элемента разрешения в 3-5 раз при соответствующем сравнении с сантиметровым диапазоном. Дальнейшее уменьшение длины волны наталкивается на проблему резкого увеличения энергетических потерь радиоволны на трассе распространения вследствие роста поглощения и рассеяния в атмосферных метеообразованиях. Кроме того, возникающие при этом технические и конструкторские проблемы зажигают красный свет перед волнами короче 1 мм.
Второй путь, связанный с уменьшением отношения $\lambda /d$, связан с увеличением линейных размеров антенны. "Лобовая" атака на эти размеры приводит к появлению очень больших антенных систем и конструкций. Однако, поскольку вся "игра" идет на соотношениях между фазами тока в различных точках антенны, а в сантиметровом и миллиметровом диапазонах фазе в $90^{\circ}$ соответствуют расстояния, измеряемые миллиметрами и их долями, проблема юстировки таких систем, их защита от температурного расширения, ветрового и дождевого воздействия, колебаний почвы и т.п. представляет собой самостоятельную проблему исключительной сложности. Сказанного достаточно, чтобы понять уникальность таких антенн и их сверхдорогую стоимость при разработке и эксплуатации. Тем не менее такие антенны существуют, но их число в мире исчисляется единицами. Антенны более скромных размеров размещаются на земле или на передвижных средствах. Однако вполне понятно, что получить у таких антенн отношение $\lambda /d$ слишком большим (свыше 150-200) не представляется реальным.
Для антенн, устанавливаемых на борту летательных аппаратов, эти размеры ограничиваются линейными размерами носителей. Попытка уменьшить угол $\Delta \alpha$ привела к созданию вдольфюзеляжных антенн. Длительное время казалось, что этим исчерпываются все возможности для бортовых радиолокационных станций.
Прорыв произошел в начале шестидесятых годов, когда впервые было обращено внимание на то, что обработка сигнала в антенне по существу сводится к сложению сигналов от различных ее участков с учетом соответствующего набега фазы, вызванного особенностями геометрии антенной конструкции. Это привело к мысли, что такую обработку можно сделать искусственно. С этой целью необходимо последовательно в разных точках пространства произвести измерение амплитуды и фазы напряженности электрического поля, запомнить эти значения, а затем специальным образом их сложить. Реализация этой идеи состоит в том, что упомянутые выше измерения производятся в процессе полета. Это дает возможность искусственно создать антенну, размеры которой определяются расстоянием между первым и последним замерами, то есть в принципе такая антенна может быть практически безграничной.
Здесь мы не будем говорить о тех теоретических и инженерных трудностях, с которыми сопряжена реализация этой идеи. Главное - это то, что названные трудности были успешно преодолены, что привело к созданию принципиально нового класса антенн - антенн с синтезированной апертурой. Радиолокационные станции, работающие с такими антеннами, получили название РЛС с синтезированной апертурой (РСА). В современных РСА удается получить отношение $d/\lambda$, исчисляемое несколькими сотнями, а в отдельных случаях даже тысячами. Использование РСА привело к такому сокращению элемента разрешения, что радиолокационное изображение стало приближаться к фотографическому (в фотографии "точка переводится в точку", в радиолокации "элемент разрешения переводится в точку"). Сегодняшний уровень РСА - это многочастотная РЛС с управляемой поляризацией излучаемой волны, работающая в реальном масштабе времени.

Назад | Вперед


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования