Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1163257&mode=2
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 03:10:14 2016
Кодировка: Windows-1251
Научная Сеть >> 8. Делимость на пять
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Обратите внимание!
 
  Наука >> Математика >> Математическое образование >> кружок МЦНМО >> 6 класс | Задачи
 Написать комментарий  Добавить новое сообщение
8. Делимость на пять
26.04.2001 14:00 | Кружок МЦНМО

    Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.
  • Хочу подсказку


  •     Решение:
    Пусть данные числа a, b, c, d, x, y, z. Запишем соответствующие суммы в виде системы $\left\{ \begin{array}{rcl} a+b+c+d+x+y&=&5n\\ b+c+d+x+y+z&=&5m\\ c+d+x+y+z+a&=&5k\\ d+x+y+z+a+b&=&5l\\ x+y+z+a+b+c&=&5t\\ y+z+a+b+c+d&=&5q\\ z+a+b+c+d+x&=&5p.\\ \end{array} \right.$ где n, m, k, l, t, q, p - натуральные числа. Сложим все семь равенств и получим 6*a+b+c+d+x+y+z=5n+m+k+l+t+q+p. Так как выражение справа делится на 5, то и сумма всех чисел a+b+c+d+x+y+z делится на 5, но тогда и любое число из данных делится на 5. Например, покажем это для x, записав равенство x=(a+b+c+d+x+y+z)-(a+b+c+d+y+z). Оба слагаемых справа делятся на 5, следовательно, и x делится на 5.


    Написать комментарий
     Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования