Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1163831&uri=6.html
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 04:13:26 2016
Кодировка: Windows-1251
Научная Сеть >> Шапероны и прионы: регуляция конформационный состояний прионного белка дрожжей SUP35
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   BOAI: наука должна быть открытой Обратите внимание!
 
  Наука >> Биология >> Молекулярная биология | Дипломные работы
 Посмотреть комментарии[1]  Добавить новое сообщение
Александров И. М. Шапероны и прионы: регуляция конформационный состояний прионного белка дрожжей SUP35

Курсовая работа студента 4-го курса кафедры вирусологии Биологического факультета МГУ. Москва, 2001
Авторские права сохранены. Любое копирование данного текста и/или его фрагментов без разрешения автора запрещено и преследуется в соответствии с действующим законодательством РФ.

Содержание   В начало...
 
 


Список литературы:

[1] Prusiner, S.B. Science. 1991; 252: 1515-1522.

[2] DebBurman SK, Raymond GJ, Caughey B, Lindquist S. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13938-43.

[3] Schirmer EC, Lindquist S. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13932-7.

[4] М.Д. Тер-Аванесян, В.В. Кушниров Прионы: инфекционные белки с генетическими свойствами. Биохимия, 1999, том 64, вып. 12, стр. 1638-1647

[5] Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 2000 Aug 25;289(5483):1317-21.

[6] Shyu WC, Kao MC, Chou WY, Hsu YD, Soong BW. Heat shock modulates prion protein expression in human NT-2 cells. Neuroreport. 2000 Mar 20;11(4):771-4

[7] Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997 May;17(5):2798-805.

[8] Kochneva-Pervukhova NV, Poznyakovski AI, Smirnov VN, Ter-Avanesyan MD. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae. Curr Genet. 1998 Aug;34(2):146-51.

[9] М.Д. Тер-Аванесян, С.В. Паушкин, В.В. Кушниров, Н.В. Кочнева-Первухова Молекулярные механизмы "белковой" наследственности: прионы дрожжей. Молекулярная Биология, 1998, том 32, N 1, стр. 32-42

[10] Kochneva-Pervukhova NV, Paushkin SV, Kushnirov VV, Cox BS, Tuite MF, Ter-Avanesyan MD. Mechanism of inhibition of [Psi+] prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 1998 Oct 1;17(19):5805-10.

[11] Kushnirov VV, Kryndushkin DS, Boguta M, Smirnov VN, Ter-Avanesyan MD. Chaperones that cure yeast artificial [Psi+] and their prion-specific effects. Curr Biol. 2000 Nov 1;10(22):1443-1446.

[12] Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [Psi] prion. Mol Cell Biol. 1999 Dec;19(12):8103-12.

[13] Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol. 1999 Feb;19(2):1325-33.

[14] Eaglestone SS, Cox BS, Tuite MF. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 1999 Apr 1;18(7):1974-81.

[17] Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. In vitro propagation of the prion-like state of yeast Sup35 protein. Science. 1997 Jul 18;277(5324):381-3.

[18] Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11910-5.

[19] Yaglom JA, Gabai VL, Meriin AB, Mosser DD and Sherman MY. The function of Hsp72 in suppression of c-Jun N-terminal kinase. Activation can be dissociated from it's role in prevention of protein damage. The Journal of Biological Chemistry. 1999 Jul 16;274(29):20223-20228.

[20] Scherrer LC, Hutchison KA, Sanchez ER, Randall SK, Pratt WB. A heat shock protein complex isolated from rabbit reticulocyte lysate can reconstitute a functional glucocorticoid receptor-Hsp90 complex. Biochemistry. 1992 Aug 18;31(32):7325-9.

[21] Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science. 1993 Mar 5;259(5100):1409-10. Review.

[22] Leustek T, Amir-Shapira D, Toledo H, Brot N, Weissbach H. Autophosphorylation of 70 kDa heat shock proteins. Cell Mol Biol. 1992 Feb;38(1):1-10. Review.

[23] Jung G, Jones G, Wegrzyn RD, Masison DC. A role for cytosolic hsp70 in yeast [Psi+] prion propagation and [Psi+] as a cellular stress. Genetics. 2000 Oct;156(2):559-70.

[24] Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [Psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 1996 Jun 17;15(12):3127-34. (цит. по [7])

[25] Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB. Structural clues to prion replication. Science. 1994 Apr 22;264(5158):530-1. (цит. по [4])

[26] Jarrett JT, Lansbury PT. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell. 1993 Jun 18;73(6):1055-8. Review. (цит. по [4])

[27] Caughey B, Kocisko DA, Raymond GJ, Lansbury PT. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol. 1995 Dec;2(12):807-17. (цит. по [4])

[28] Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [Psi+]. Science. 1995 May 12;268(5212):880-4. (цит. по [11] и [23])

[29] Liang P, MacRae TH. Molecular chaperones and the cytoskeleton. J Cell Sci. 1997 Jul;110 ( Pt 13):1431-40. Review. (цит. по [13])

[30] Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell. 1998 Jul 10;94(1):73-82.

[31] Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [Psi+] prion in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):507-19. (цит. по [11])

[32] Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [Psi+], a heritable prion-like factor of S. cerevisiae. Cell. 1997 May 30;89(5):811-9. (цит. по [11])

[33] Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999 Dec 3;286(5446):1888-93. Review.

[34] Harris DA. Cellular biology of prion diseases. Clin Microbiol Rev. 1999 Jul;12(3):429-44. Review

[35] Checa SK, Viale AM. The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. Eur J Biochem. 1997 Sep 15;248(3):848-55.

[36] Wickner, R.B., and Y.O. Chernoff. Prions of fungi: [URE3], [Psi+] and [Het-s] discovered as heritable traits, 1999, p. 229-272. In S. B. Prusiner (ed.), Prion biology and diseases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

[37] Wickner, R.B. [URE3] is an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. 1994, Science 264:566-569.

[38] Sanchez Y, Parsell DA, Taulien J, Vogel JL, Craig EA, Lindquist S. Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol. 1993 Oct;175(20):6484-91. (цит. по [13])

[39] Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1131-5. (цит. по [3])

[40] Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science. 1995 Oct 6;270(5233):93-5. (цит. по [8])

[41] Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet. 1993 Sep;24(3):268-70 (цит. по [8])

[42] Santoso A, Chien P, Osherovich LZ, Weissman JS. Molecular basis of a yeast prion species barrier. Cell. 2000 Jan 21;100(2):277-88. (цит. по [18])

[43] Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell. 2000 Jan;5(1):163-72. (цит. по [18])

[44] Lindquist S. But yeast prion offers clues about evolution. Nature. 2000 Nov 2;408(6808):17-8.


Посмотреть комментарии[1]
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования