Документ взят из кэша поисковой машины. Адрес оригинального документа : http://wasp.phys.msu.ru/forum/index.php?showtopic=17147
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 04:56:24 2016
Кодировка: Windows-1251
Факультатив "Конкретная теория вероятностей" в НМУ - Студенческий форум Физфака МГУ
IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Reply to this topicStart new topic
Факультатив "Конкретная теория вероятностей" в НМУ
ansobol
сообщение 6.2.2010, 0:45
Сообщение #1


свой
****

Группа: Участники
Сообщений: 43
Репутация: 4

Предупреждения:
(0%) -----


С 10 февраля по средам начинаю читать в Независимом университете курс Конкретная теория вероятностей.

В 2006-2009 годах этот курс читался студентам кафедры квантовой статистики и теории поля вместо общефизфаковского курса ТВМС. Курс представляет собой современное введение в теорию вероятностей для физиков. Центральное место занимает изложение всей системы асимптотических теорем теории вероятностей (закон больших чисел, центральная предельная теорема, ее обобщение для "тяжелых хвостов", предельные теоремы для экстремальных значений и теория больших уклонений), из которых в стандартный курс обычно проникают только первые два сюжета. Важную роль играют теоретико-информационные понятия и, в частности, понятие энтропии.

Изложение проведено в минимально необходимой степени общности (как правило, для совокупностей независимых одинаково распределенных случайных величин) и дополнено разбором типичных примеров и контрпримеров. Аппарат теории меры, как правило, не используется. Подчеркнут вычислительный аспект теории.

Курс будет читаться в ауд. 307 Независимого университета (Б. Власьевский пер., 11, схема проезда тут). Лекции проходят с 17.30 по 19.10 и дополняются семинарскими занятиями с 19.10 до 20.50.

Со страницей курса можно ознакомиться тут.

Краткая программа курса:

* Теория распределений

Случайные величины, принимающие значения в Z и R, и их распределения вероятности. Функция плотности вероятности и кумулятивная функция распределения. Интеграл Римана-Стильтьеса, математическое ожидание и моменты, дисперсия. Производящие функция дискретных распределений вероятности, характеристические функции в скалярном и векторном случае. Теоремы Бохнера-Хинчина и Марцинкевича (без доказательства). Совместное распределение пары и вектора случайных величин, маргинальные и условные распределения, матрица ковариации. Независимость случайных величин (попарная и в совокупности), аддитивность дисперсии, факторизация распределения вероятности, производящих и характеристических функций.

Примеры дискретных распределений: биномиальное, геометрическое, отрицательное биномиальное, пуассоново. Предельная теорема Пуассона. Примеры абсолютно непрерывных распределений: равномерное, показательное, гамма-распределение (хи-квадрат распределение), распределение Гаусса в скалярном и векторном случае, распределения Коши, Стьюдента, Гумбеля, Фреше, Вейбулла. Канторова лестница, фрактальные и мультифрактальные меры.

* Асимптотические теоремы теории вероятностей

Слабая сходимость распределений. Закон больших чисел. Сходимость характеристических функций. Центральная предельная теорема. Обобщенная центральная предельная теорема и устойчивые распределения. Безгранично делимые распределения, формула Леви-Хинчина (с наброском доказательства). Статистика экстремальных значений, предельная теорема Фишера-Типпета-Гнеденко (с наброском доказательства). Большие уклонения в последовательности испытаний Бернулли, асимптотическое равнораспределение, теорема Санова. Большие уклонения в последовательности непрерывно распределенных величин, теорема Крамера.

* Энтропия, информация, статистический вывод

Энтропия, относительная энтропия, взаимная информация распределений вероятности. Проверка простой гипотезы. G-статистика, статистика хи-квадрат, биномиальная статистика для малых выборок. Выбор между альтернативными гипотезами. Ошибки первого и второго рода, теорема Неймана-Пирсона. Отношение правдоподобия. Асимпотика вероятности ошибок и теория больших уклонений. Статистическое оценивание параметров. Несмещенные, состоятельные, эффективные оценки. Метод наибольшего правдоподобия. Неравенство Рао-Крамера и информация по Фишеру. Понятие об информационной геометрии семейства распределений.

* Цепи Маркова и случайные процессы

Вероятностное пространство Штейнгауза. Пространство элементарных событий, алгебры событий, фильтрации. Однородная цепь Маркова с конечным множеством состояний в дискретном времени. Классификация стационарных распределений. Цепь Маркова в непрерывном времени, процесс Пуассона. Случайное блуждание и процесс Винера. Эвристический вывод уравнения Фоккера-Планка, задача о моменте выхода.


--------------------
Я сказал глупость. Сейчас я скажу все то же самое, только правильно. (записала Tanushka)
Go to the top of the page Вставить ник
+
ivandasch
сообщение 6.2.2010, 3:29
Сообщение #2


-----
***********

Группа: Элита
Сообщений: 4,867
Репутация: 260

Предупреждения:
(0%) -----


Жаль, что в это время алгебра у первого курса sad.gif Скажите, а Вы можете принимать листочки в другое время или день?


--------------------
Возле города Пекина ходят-бродят хунвейбины.
И старинные картины ищут-рыщут хунвейбины.
И не то, чтоб хунвейбины любят статуи, картины,
Вместо статуй будут урны революции культурной.

И ведь главное, знаю отлично я,
Как они произносятся,
Но что-то весьма неприличное
На язык ко мне просится,
Хунвейбины.
Go to the top of the page Вставить ник
+
ansobol
сообщение 6.2.2010, 10:54
Сообщение #3


свой
****

Группа: Участники
Сообщений: 43
Репутация: 4

Предупреждения:
(0%) -----


Цитата
Скажите, а Вы можете принимать листочки в другое время или день?


Почему нет. Я обычно бываю в Независимом и по четвергам, например.


--------------------
Я сказал глупость. Сейчас я скажу все то же самое, только правильно. (записала Tanushka)
Go to the top of the page Вставить ник
+

Reply to this topicStart new topic
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



Текстовая версия Сейчас: 10.04.2016, 4:56