Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://zmmu.msu.ru/bats/biblio/anufr_06.pdf
Äàòà èçìåíåíèÿ: Fri Jun 8 14:08:44 2007
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 00:49:51 2012
Êîäèðîâêà:
Plecotus et al. 9 (2006): 8-17 __________________________________________________________________________________

599.426:591.543.42 (571.56)

(Chiroptera, Vespertilionidae)
.. , ..
- . , -, . , 1.6% . 1-3º 0.2-0.4% . : , , .

: Eptesicus nilssonii (Keyserling et Blasius, 1839) Plecotus auritus (Linnaeus, 1758). , . ­ ; - , .


, 2002 . "" (60º25´ c.., 120º30´ ..). . : 0-3º. 1 , . , .. . . , . , , . 4, .


Plecotus et al. 9 (2006)

9

2 2 . 500 3 000 . 4 , (, 1984; . 1989).


1, 2 1-7.



, , : , , , . , 3-6 . . , , . , , , . : , . , ( 1986). . . , .



E. nilssonii P. auritus 3531 2368 (. 1). 96-97% , 2% . , (French 1985), 0.6-1.0% . (0.4-0.6%). ( ) 1.0% 1.6%.


10
1. .
Table 1. Time budget of the bats during hibernation period.

Species % %

Hibernation phases Arousal Activity Going into torpor Torpor 15.0 0.42 14.0 0.59 20.5 0.58 23.0 0.97 59.0 1.67 49.0 2.07 3436.5 97.33 2282.0 96.37

Total 3531.0 100 2368.0 100

E. nilssonii P. auritus

152.1 , ­ 214.8 . 1.2 , ­ 1.4 (. 2, . 1). (French 1985) .
2. ( ) .
Table 2. Duration of different phases of hibernation (in hours) in the bats.

Hibernation phase Arousal Activity Going unto torpor Torpor

Parameter n M±m lim n M±m lim n M±m lim n M±m lim

E. nilssonii 17 0.88±0.10 0.5­1.5 17 1.20±0.30 0.5­5.0 17 3.50±0.17 2.0­5.0 16 214.80±23.90 93.0­428.0

P. auritus 17 0.82±0.07 0.5­1.5 17 1.40±0.20 0.5­3.0 17 2.90±0.19 1.5­4.0 15 152.1±9.80 86.0­225.0

. , , 504 , ­ 672 ( 1958, 1965). Myotis myotis 984 , M. lucifugus ­ 744, Eptesicus fuscus ­ 600, Rhinolophus hipposideros ­ 432 (Hock 1951; Pohl 1961; Kulzer 1965; Daan 1973; French 1977; Harmata 1987; Thomas et al. 1990). , P. auritus E. nilssonii


Plecotus et al. 9 (2006)

11

225 428 (. 2). , , ­ (Buck, Barnes 2000).

. 1. (1) (2) .
Fig. 1. A course of hibernation in a northern bat (1) and long-eared bat (2) as determined by changes in their body temperature. Time in hours.

. , , . , , . (. 2). : (Ortmann, Heldmaier 2000), (Grahn et al. 1994; 2005; . 2005), (Canguilhem et al. 1994; Wollnik, Schmidt 1995) (Daan 1973). ( , ) , . , , , - (. 3): 21.7±1.1 (n=13); ­ 18.3±1.9 (n=9). , , -


12 ( ), .

. 2. (1) (2) ( 22 14 ).
Fig. 2. Changes in duration (in hours) of torpor bouts (1) and arousals (2) in a northern bat during hibernation period from 22 November to 14 March. The x-axis represents the ordinal number of torpor bouts and arousals, the y-axis represents the duration of these phases in hours.

. 3. (1) (2).
Fig. 3. Time of the day of arousals in a northern bat (1) and long-eared bat (2). The x-axis represents the ordinal numbers of arousals, the y-axis represents time of the day.


Plecotus et al. 9 (2006)

13





. 0.5º (. 4). (. 5). , . . ; , , (Hut et al. 2002). , . (Daan 1973; French 1977, 1985; Pohl 1987; Geiser, Ruf 1995; Strijkstra, Daan 1998).

.4. . 1 ­ , 2 ­ .
Fig. 4. Dynamics of the body surface temperature in a northern bat while being torpid. 1 is body temperature, 2 is ambient temperature. The x-axis represents time in hours.

. 5. . 1 ­ , 2 ­ .
Fig. 5. Dynamics of the body surface temperature in a bat during spontaneous arousal. 1 is body temperature, 2 is ambient temperature. The x-axis represents time in hours.


14



, . . 6 7. . 3º 20 , 10º (. 6). 2º 3 . 25 (. 7), 4-5 . 12.8 2º 0.056±0.0026 /· (n=7). 12º 12-15 /·.

. 6. .
Fig. 6. Dependence of metabolic rate from ambient temperature in a northern bat.

. 7. .
Fig. 7. Metabolic rate in a northern bat during going into torpor. Time in minutes.

(. 3). , .


, , . , ( 2004, 2005; . 2005). , ""


Plecotus et al. 9 (2006)

15

4-6% , ­ 1-2%.
3. .
Table 3. Oxygen consumption in different bat species during torpor bouts in hibernation period.

Species Myotis myotis M. lucifugus M. velifer M. nattereri M. daubentonii

O2 Body mass Body temperature O2 uptake 25.0 5.2 12.0 8.0 9.0 4.0º 1.3º ­ 9.0º ­ 0.040 /· 0.020 /· 0.070 /· 0.031 /· 0.070 /·

Sources Pohl 1961; Kulzer 1965; Harmata 1987 Hock 1951; French 1985; Thomas et al. 1990 Riedesel, Williams 1976 Kulzer 1965 Speakman et al. 1991

0.2-0.4% , -, .


1-3º .

, 06-04-96013 ( ).





.. 2004. Sciuridae - . ­ .: (, , , ). . . . , 25-27 2004 ., . .: 11-12. .. 2005. - . ­ .: , . , -: 18-20. .., .., .., .. 2005. Sciuridae - . ­ 5: 1-7. .., .. 1984. . ­ .: . . 1. (, ). - IV . . : 4-5.


16
.., .., .. . 1989. - 6202 - . ­ 1: 8688. .. 1986. . ­ .: . ., : 6-17. .. 1958. . ­ . 25: 255-304. .. 1965. (Chiroptera: Vespertilionidae) . . . . ., 20 . Buck C.L., Barnes B.M. 2000. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. ­ Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(1): 255-262. Canguilhem B., Malan A., Masson-Pevet M. et al. 1994. Search for rhythmicity during hibernation in the European hamster. ­ J. Comp. Physiol. B 163: 690- 698. Daan S. 1973. Activity during natural hibernating in three species of vespertlionid bats. ­ Nether. J. Zool. 23(17): 1-71. Fowler P.A., Racey P.A. 1990. Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog Erinaceus europaeus. ­J. Comp. Physiol. B 160: 299-307. French A.R. 1977. Periodicity of recurrent hypothermia during hibernation in the pocket mouse, Perognathus longimembris. ­ J. Comp. Physiol. B 115: 87-100. French A.R. 1985. Allometries of the duration of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. ­ J. Comp. Physiol. B 156: 13-19. Geiser F., Ruf T. 1995. Invited perspectives in physiological zoology: hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. ­ Physiol. Zool. 68: 935-966. Grahn D.A., Miller J.D., Houng V.S., Heller H.C. 1994. Persistence of circadian rhythmicity in hibernating ground squirrels. ­ Am. J. Physiol. 266: 1251-1258. Harmata W. 1987. The frequency of winter sleeps interruptions in two species of bats hibernating in limestone tunnels. ­ Acta Theriol. 32: 331-332. Hock R.J. 1951. The metabolic rates and body temperatures of bats. ­ Biol. Bull. 101: 289299. Hut R.A., Barnes B.M., Daan S. 2002. Body temperature patterns before, during, and after semi-natural hibernation in the European ground squirrel. ­ J. Comp. Physiol. B 172(1): 47-58. Kulzer E. 1965. Temperaturregulation bei FledermÄusen aus verschiedenen limazonen ­ Z. Vergl. Physiol. 50: 1-34. Ortmann S. Heldmaier G. 2000. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). ­ Am. J. Physiol. Regul. Integr. Comp. Physiol. 278(3): 698-704. Pohl H. 1961. Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschlafern. ­ Z. Vergl. Physiol. 45: 109-153. Pohl H. 1987. Circadian pacemaker does not arrest in deep hibernation. Evidence for desynchronization from the light cycle. ­ Experientia 43: 293-294. Riedesel M.L., Williams B.A. 1976. Continuous 24-hour oxygen consumption studies of Myotis velifer. ­ Comp. Biochem. Physiol. 54A: 95-99. Speakman J.R., Webb P.I., Racey P.A. 1991. Effects of disturbance on the energy expenditure of hibernating bats. ­ J. Appl. Ecol. 28: 1087-1104. Strijkstra A.M., Daan S. 1998. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. ­ Am. J. Physiol. Regul. Integr. Comp. Physiol. 275: 1110-1117.


Plecotus et al. 9 (2006)

17

Thomas D.W., Cloutier D., Gagne A.D. 1990. Arrhythmic breathing, apnea and nonsteady-state oxygen uptake in hibernating little brown bats (Myotis lucifugus). ­ J. Exp. Biol. 149: 395-406. Wollnik F., Schmidt B. 1995. Seasonal and daily rhythmus of body temperature in the European hamsters (Cricetus cricetus) under semi-natural conditions. ­ J. Comp. Physiol. B 165: 171-178.

S

UMMARY

Anufriev A.I., Revin Yu.V. 2006. Bioenergetics of hibernating bats (Chiroptera, Vespertilionidae) in Yakutia. ­ Plecotus et al. 9: 8-17. The bats were sampled in early November 2002 from the working mine "Olekminsky" (60º25´ N, 120º30´ E) and carried by aircraft to Yakutsk. Two northern bats Eptesicus nilssonii and two long-eared bats Plecotus auritus were maintained under semi-natural conditions (at full darkness and ambient temperature 1-3ºC) in individual boxes supplied with thermoresistors. Body temperature measurements were taken every half an hour during 3531 h in E. nilssonii and 2368 h in P. auritus. Another four northern bats were used in experiments on oxygen consumption at different ambient temperatures and at going into torpor. It has been established that the animals spent 96-97% of hibernation period in hypothermy, and going into torpor occupied only some 2% (Table 1). Torpor duration was in average 212.8 h in northern bats, and 152.1 h in long-eared bats; active state (arousal + normothermy) lasted in average 1.2 h in E. nilssonii and 1.4 h in P. auritus (Table 2; Figs 1, 2). The both species awaked mostly in evening and at night (Fig. 3). During torpor the body temperature of the animals did not differ more than 0.5ºC from ambient temperature (Fig. 4). At 1-3ºC the metabolic rate of the bats was 0.2-0.4% of the level in the active state (Figs 6, 7). K e y w o r d s : bats, hibernation, metabolic rate. : . , 41, . 677980 E-mail: anufry@ibpc.ysn.ru () . , 41, . 677980
Authors' addresses: Andrei I. ANUFRIEV Institute of Biology of the Cryolithozone, Siberian Branch of Russian Acad. Sci. prospect Lenina 41, Yakutsk 677980, Republic of Sakha (Yakutia), Russian Federation E-mail: anufry@ibpc.ysn.ru Yury V. REVIN Institute of Applied Ecology of the North, Acad. Sci. Rep. Sakha (Yakutia) prospect Lenina 41, Yakutsk 677980, Republic of Sakha (Yakutia), Russian Federation