Є Universite catholique de Louvain Є Є Departement des Sciences economiques ` Є Є These presentee en vue de lobtention du grade de Є docteur en sciences economiques Essays on economic dynamics under heterogeneity Anton O. Belyakov Composition du jury: Julio Davila (promoteur) Raouf Boucekkine Carmen Camacho Vladimir Veliov Mathieu Parenti Acknowledgements First of all I would like to thank my supervisors Raouf Boucekkine and Julio Davila. I'm grateful to other members of my doctoral jury: Mathieu Parenti,
VIII International Workshop on Advanced Computing and Analysis Techniques in Physics Research 24-28 June, 2002 Moscow, Russia Organizers: Moscow State University and Joint Institute for Nuclear Research (Dubna) ACAT'2002 BOOK OF ABSTRACTS Edited by: V.A. Ilyin http://acat02.sinp.msu.ru e-mail: acat02@sinp.msu.ru Phones: (LOC, during the Workshop days) +7 (095) 939-57-06 +7 (095) 939-50-77 +7 (095) 939-03-97 (+fax) For urgent phone call: from Russia (in Moscow too) 8-903-774-74-63 from outside the Russia +7
The beamer class Manual for version 3.06. \begin{frame} \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{proof} \begin{enumerate} \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q+1$ is not divisible by any of them. \item<1-> Thus $q+1$ is also prime and greater than $p$.\qedhere