? ? 1.???????????????? 3 2.Реформа и инновации в сфере государственных услуг в России. 8 3.Особенности развития экономики Шэньчжэня 26 4.в условиях модификации модели роста в КНР 26 5.???????????????? 39 6.СРАВНИТЕЛЬНЫЙ ОПЫТ УЧАСТИЯ РОССИИ И КИТАЯ В ИНСТИТУТАХ ГЛОБАЛЬНОГО УПРАВЛЕНИЯ 41 7.Принципы развития межрегиональных центров подготовки кадров для государственного управления в Российской Федерации 59 8.??????????????? 74 9.Региональные особенности государственного регулирования сферы образования в РФ 82
... Gen. 38 (2005) 17231740 doi:10.1088/0305- 4470/38/8/009 Coupling of eigenvalues of complex matrices at diabolic and exceptional points A P Seyranian, O N Kirillov and A A Mailybaev Institute of Mechanics, Moscow State Lomonosov University, Michurinskii pr. ... Coupling of eigenvalues Let us consider the eigenvalue problem Au = u (1) Coupling of eigenvalues of complex matrices at diabolic and exceptional points Table 1. ... Eigenvalues strongly couple at the point 0 in the complex plane. ...
... Soc. 376, 10331046 (2007) doi:10.1111/j.1365-2966.2007.11549.x Kinematics and stellar populations of the dwarf elliptical galaxy IC 3653 I. V. Chilingarian,1 1 2 ,2,3 P. Prugniel, 2,4 O. K. Sil'chenko1 and V. L. Afanasiev 5 Sternberg Astronomical Institute of the Moscow State University, Universitetsky pr. ... Fitting the spectra with synthetic single stellar populations (SSP), we found an SSPequivalent age of 5 Gyr and nearly solar metallicity [Fe/H] =-0.06 dex. ... 2007 The Authors. ...
... There are two main thrusts in the theory of regular and chiral p olytop es: the abstract, purely combinatorial asp ect, and the geometric one of realizations. ... The dimension of a faithful realization of a finite abstract regular p olytop e in some euclidean space is no smaller than its rank, while that of a chiral p olytop e must strictly exceed the rank. ... In E4 , therefore, the open cases are the (finite) chiral polytopes of rank 3, and the regular or chiral apeirotopes of ranks 3 and 4. ...
Economic, industry and corporate trends A report from the Economist Intelligence Unit sponsored by Cisco Systems Foresight 2020 Economic, industry and corporate trends Contents Preface Executive summary Chapter 1: The world economy Chapter 2: Industries Automotive Consumer goods and retailing Energy Financial services Healthcare and pharmaceuticals Manufacturing Public sector Telecoms Chapter 3: The company Appendix I: Survey results 2 3 6 22 24 30 36 43 50 57 62 67 74 86 Appendix II: Methodology for
[
Текст
]
Ссылки http://bc.fdo.msu.ru/Nik_s/WorkFiles/DOC_files/World_shares_foresight_2020.pdf -- 425.8 Кб -- 20.03.2012 Похожие документы
Network Working Group R. Fielding Request for Comments: 2068 UC Irvine Category: Standards Track J. Gettys J. Mogul DEC H. Frystyk T. Berners-Lee MIT/LCS January 1997 Hypertext Transfer Protocol -- HTTP/1.1 Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this
PathScaleTM Compiler Suite User Guide Version 3.1 Page i PathScale Compiler Suite User Guide Version 3.1 Information furnished in this manual is believed to be accurate and reliable. However, PathScale LLC assumes no responsibility for its use, nor for any infringements of patents or other rights of third parties which may result from its use. PathScale LLC reserves the right to change product specifications at any time without notice. Applications described in this document for any of these products are
The beamer class Manual for version 3.06. \begin{frame} \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{proof} \begin{enumerate} \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q+1$ is not divisible by any of them. \item<1-> Thus $q+1$ is also prime and greater than $p$.\qedhere
-- MySQL dump 8.23 -- -- Host: localhost Database: slides --------------------------------------------------------- -- Server version 3.23.58 -- -- Table structure for table `book` -- DROP TABLE IF EXISTS book; CREATE TABLE book ( id_content int(11) NOT NULL default '0', title varchar(255) default NULL, text1 text, text2 text, PRIMARY KEY (id_content) ) TYPE=MyISAM; -- -- Dumping data for table `book` -- INSERT INTO book VALUES (110,'Электронный учебник','',''); INSERT INTO book VALUES